Mots-clés : Jordan set, Jordan set.
@article{VTAMU_2020_25_131_a0,
author = {E. Yu. Grazhdantseva},
title = {Fundamental operator-function of an integro-differential operator with derivatives of functionals in {Banach} spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {249--262},
year = {2020},
volume = {25},
number = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/}
}
TY - JOUR AU - E. Yu. Grazhdantseva TI - Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 249 EP - 262 VL - 25 IS - 131 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/ LA - ru ID - VTAMU_2020_25_131_a0 ER -
%0 Journal Article %A E. Yu. Grazhdantseva %T Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces %J Vestnik rossijskih universitetov. Matematika %D 2020 %P 249-262 %V 25 %N 131 %U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/ %G ru %F VTAMU_2020_25_131_a0
E. Yu. Grazhdantseva. Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 249-262. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/
[1] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamental operator-functions of degenerate differential and differential-difference operators with Noetherian operator in the main part in Banach spaces”, Siberian Mathematical Journal, 30:1 (2019), 73–94 | MR | MR | Zbl
[2] M. V. Falaleev, “Fundamental operator-functions of singular differential operators in Banach spaces”, Siberian Mathematical Journal, 41:5 (2000), 1167–1182 | DOI | MR | Zbl
[3] E. Yu. Grazhdantseva, Fundamental`nie operator-funkcii virogdennih differencial`nih operatorov visokogo poriadka v banahovih prostranstvah, Izdatelstvo ISU, Irkutsk, 2013 (In Russian)
[4] M. M. Vainberg, V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations Hardcover, v. I, Wolters-Noordhoff B.V., Great Britain, 1974 | MR
[5] M. V. Falaleev, “Generalized Solution of Integro-Differential Equations of the Viscoelasticity Theory”, International Conference on Applied Science and Engineering-Proceeding, 2018, 42–45