Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 249-262
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a generalized integro-differential operator with derivatives of functionals, which has in its construction an invertible operator in the linear part free of derivatives. The research uses previously obtained results in the field of fundamental operator functions in Banach spaces, as well as the properties of generalized functions, operators, and functionals. For an integro-differential operator with derivatives of functionals in Banach spaces, a fundamental operator-function in the terminology of Jordan sets is obtained and the conditions for the existence of this fundamental operator-function are revealed.
Keywords: Banach space, generalized function, fundamental operator-function, Banach space, generalized function, fundamental operator-function
Mots-clés : Jordan set, Jordan set.
@article{VTAMU_2020_25_131_a0,
     author = {E. Yu. Grazhdantseva},
     title = {Fundamental operator-function of an integro-differential operator with derivatives of functionals in {Banach} spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {249--262},
     year = {2020},
     volume = {25},
     number = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/}
}
TY  - JOUR
AU  - E. Yu. Grazhdantseva
TI  - Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 249
EP  - 262
VL  - 25
IS  - 131
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/
LA  - ru
ID  - VTAMU_2020_25_131_a0
ER  - 
%0 Journal Article
%A E. Yu. Grazhdantseva
%T Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 249-262
%V 25
%N 131
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/
%G ru
%F VTAMU_2020_25_131_a0
E. Yu. Grazhdantseva. Fundamental operator-function of an integro-differential operator with derivatives of functionals in Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 249-262. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a0/

[1] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamental operator-functions of degenerate differential and differential-difference operators with Noetherian operator in the main part in Banach spaces”, Siberian Mathematical Journal, 30:1 (2019), 73–94 | MR | MR | Zbl

[2] M. V. Falaleev, “Fundamental operator-functions of singular differential operators in Banach spaces”, Siberian Mathematical Journal, 41:5 (2000), 1167–1182 | DOI | MR | Zbl

[3] E. Yu. Grazhdantseva, Fundamental`nie operator-funkcii virogdennih differencial`nih operatorov visokogo poriadka v banahovih prostranstvah, Izdatelstvo ISU, Irkutsk, 2013 (In Russian)

[4] M. M. Vainberg, V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations Hardcover, v. I, Wolters-Noordhoff B.V., Great Britain, 1974 | MR

[5] M. V. Falaleev, “Generalized Solution of Integro-Differential Equations of the Viscoelasticity Theory”, International Conference on Applied Science and Engineering-Proceeding, 2018, 42–45