Mots-clés : constant term, Lax equations.
@article{VTAMU_2020_25_130_a6,
author = {G. F. Helminck and E. A. Panasenko},
title = {Properties of the algebra psd related to integrable hierarchies},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {183--195},
year = {2020},
volume = {25},
number = {130},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a6/}
}
TY - JOUR AU - G. F. Helminck AU - E. A. Panasenko TI - Properties of the algebra psd related to integrable hierarchies JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 183 EP - 195 VL - 25 IS - 130 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a6/ LA - ru ID - VTAMU_2020_25_130_a6 ER -
G. F. Helminck; E. A. Panasenko. Properties of the algebra psd related to integrable hierarchies. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 183-195. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a6/
[1] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl
[2] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Camb. Phil. Soc., 86:1 (1979), 131–143 | DOI | MR | Zbl
[3] I. M. Gelfand, L. A. Dickey, “Fractional powers of operators and Hamiltonian systems”, Funct. Anal. Its Appl., 10:4 (1976), 259–273 | DOI | MR
[4] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassman manifold”, Nonlinear Partial Differential Equations In Applied Science, Proceedings of the U.S.-Japan seminar “Nonlinear partial differential equations in applied science” (Tokyo, 1982), North-Holland mathematics studies, 1983, 259–272 | DOI | MR
[5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Non-Linear Integrable Systems–Classical Theory and Quantum Theory, Proceedings of RIMS symposium “Non-linear integrable systems–classical theory and quantum theory” (Kyoto, Japan, 13-16 May, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR
[6] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publications Mathematiques de l'IHES, 61 (1985), 5–65 | DOI | MR | Zbl
[7] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Integrable deformations in the algebra of pseudo differential operators from a Lie algebraic perspective”, Theoret. and Math. Phys., 174:1 (2013), 134–153 | DOI | MR | Zbl
[8] G. F. Helminck, E. A. Panasenko, S. V. Polenkova, “Bilinear equations for the strict KP hierarchy”, Theoret. and Math. Phys., 185:3 (2015), 1804–1816 | DOI | MR
[9] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators”, Journal of Geometry and Physics, 85 (2014), 196–205 | DOI | MR | Zbl
[10] G. F. Helminck, E. A. Panasenko, “Geometric solutions of the strict KP hierarchy”, Theoret. and Math. Phys., 198:3 (2019), 48–68 | DOI | MR | Zbl
[11] G. F. Helminck, E. A. Panasenko, “Expressions in Fredholm determinants for solutions of the strict KP hierarchy”, Theoret. and Math. Phys., 199:2 (2019), 637–651 | DOI | MR | Zbl