@article{VTAMU_2020_25_130_a4,
author = {E. B. Laneev and P. A. Lesik and A. V. Klimishin and A. M. Kotyukov and A. A. Romanov and A. G. Khegai},
title = {On a stable approximate solution of an ill-posed boundary value problem for the metaharmonic equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {156--164},
year = {2020},
volume = {25},
number = {130},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a4/}
}
TY - JOUR AU - E. B. Laneev AU - P. A. Lesik AU - A. V. Klimishin AU - A. M. Kotyukov AU - A. A. Romanov AU - A. G. Khegai TI - On a stable approximate solution of an ill-posed boundary value problem for the metaharmonic equation JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 156 EP - 164 VL - 25 IS - 130 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a4/ LA - ru ID - VTAMU_2020_25_130_a4 ER -
%0 Journal Article %A E. B. Laneev %A P. A. Lesik %A A. V. Klimishin %A A. M. Kotyukov %A A. A. Romanov %A A. G. Khegai %T On a stable approximate solution of an ill-posed boundary value problem for the metaharmonic equation %J Vestnik rossijskih universitetov. Matematika %D 2020 %P 156-164 %V 25 %N 130 %U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a4/ %G ru %F VTAMU_2020_25_130_a4
E. B. Laneev; P. A. Lesik; A. V. Klimishin; A. M. Kotyukov; A. A. Romanov; A. G. Khegai. On a stable approximate solution of an ill-posed boundary value problem for the metaharmonic equation. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 156-164. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a4/
[1] J. P. Agnelli, A. A. Barrea, C. V. Turner, “Tumor location and parameter estimation by thermography”, Mathematical and Computer Modelling, 53:7-8 (2011), 1527–1534 | Zbl
[2] E. B. Laneev, B. Vasudevan,, “On a stable solution of a mixed problem for the Laplace equation”, PFUR Reports. Series: Applied Mathematics and Computer Science, 1999, no. 1, 128–133 (In Russian) | MR | Zbl
[3] E. B. Laneev, “Construction of a Carleman Function Based on the Tikhonov Regularization Method in an Ill-Posed Problem for the Laplace Equation”, Differential Equations, 54:4 (2018), 476–485 | MR | Zbl
[4] A. N. Tikhonov, V. YA. Arsenin, Metody Resheniya Nekorrektnyh Zadach, Nauka, Moscow, 1979 (In Russian)
[5] A. N. Tikhonov A.N., V. B. Glasko, O. K. Litvinenko, V. R. Melikhov, “O prodolzheni potenciala v storonu vozmushchayushchih mass na osnove metoda regulyarizacii”, Izv. AN SSSR. Fizika Zemli, 1968, no. 1, 30–48 (In Russian)
[6] E. B. Laneev, M. N. Muratov,, “Ob odnoy obratnoy zadache k kraevoy zadache dlya uravneniya Laplasa s usloviem tret’ego roda na netochno zadannoy granitse”, PFUR Reports. Series: Mathematics, 10:1 (2003), 100–110 (In Russian)
[7] G. R. Ivanitskii, “Thermovision in medicine”, Herald of the Russian Academy of Sciences, 76:1 (2006), 48–58 (In Russian) | MR