On the possibility of obtaining the optimal order of accuracy when restoring the impact by the dynamic method
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 147-155

Voir la notice de l'article provenant de la source Math-Net.Ru

Yu. S. Osipov and A. V. Kryazhimsky proposed a method of dynamic regulation to restore an unknown effect in a controlled model. In the framework of this approach, in the present work we study the property of another method based on the use of the implicit Euler method for the problem of numerical differentiation. The choice of the parameters of the method is indicated, which makes it possible to increase its efficiency, reduce the noise level of the approximate solution, and obtain the optimal order of accuracy in the metric $ L(T),$ equal to $\frac{1}{2}.$
Keywords: dynamic regularization method, order of accuracy of the algorithm
Mots-clés : implicit Euler method.
@article{VTAMU_2020_25_130_a3,
     author = {A. Yu. Vdovin and S. S. Rubleva},
     title = {On the possibility of obtaining the optimal order of accuracy when restoring the impact by the dynamic method},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {147--155},
     publisher = {mathdoc},
     volume = {25},
     number = {130},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a3/}
}
TY  - JOUR
AU  - A. Yu. Vdovin
AU  - S. S. Rubleva
TI  - On the possibility of obtaining the optimal order of accuracy when restoring the impact by the dynamic method
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 147
EP  - 155
VL  - 25
IS  - 130
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a3/
LA  - ru
ID  - VTAMU_2020_25_130_a3
ER  - 
%0 Journal Article
%A A. Yu. Vdovin
%A S. S. Rubleva
%T On the possibility of obtaining the optimal order of accuracy when restoring the impact by the dynamic method
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 147-155
%V 25
%N 130
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a3/
%G ru
%F VTAMU_2020_25_130_a3
A. Yu. Vdovin; S. S. Rubleva. On the possibility of obtaining the optimal order of accuracy when restoring the impact by the dynamic method. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 147-155. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a3/