The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 131-146
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the boundary control problem for the homogeneous string vibration equation with given the classical boundary (initial and final) conditions and with given values of the deflection function at intermediate times. The control is performed by displacement of the left end of the string when the right end is fixed. The problem is reduced to the control problem with zero boundary conditions. We propose the constructive method for constructing the boundary control of the process of string vibrations with given values of the deflection function at intermediate times.We present the results of numerical experiments and the corresponding graphs confirm the validity of the results.
Keywords: string vibrations, vibration control, boundary control, intermediate state control, separation of variables.
@article{VTAMU_2020_25_130_a2,
     author = {V. R. Barseghyan and S. V. Solodusha},
     title = {The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {131--146},
     year = {2020},
     volume = {25},
     number = {130},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a2/}
}
TY  - JOUR
AU  - V. R. Barseghyan
AU  - S. V. Solodusha
TI  - The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 131
EP  - 146
VL  - 25
IS  - 130
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a2/
LA  - ru
ID  - VTAMU_2020_25_130_a2
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%A S. V. Solodusha
%T The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 131-146
%V 25
%N 130
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a2/
%G ru
%F VTAMU_2020_25_130_a2
V. R. Barseghyan; S. V. Solodusha. The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 131-146. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a2/

[1] A. G. Butkovskii, The Theory of Optimal Control of Systems with Distributed Parameters, Nauka, Moscow, 1965 (In Russian)

[2] A. G. Butkovskii, Control Methods for Systems with Distributed Parameters, Nauka, Moscow, 1975 (In Russian)

[3] L. N. Znamenskaya, Control of Elastic Vibrations, Fizmatlit, Moscow, 2004 (In Russian)

[4] V. A. Ilin, E. I. Moiseev, “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi matematicheskikh nauk, 60:6(366) (2005), 89–114 | MR | Zbl

[5] E. I. Moiseev, A. A. Holomeeva, A. A. Frolov, “Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 160, VINITI, Moscow, 2019, 74–84 (In Russian)

[6] V. R. Barseghyan, M. A. Saakyan, “The optimal control of wire vibration in the states of the given intermediate periods of time”, Proc. of NAS RA. Mechanics, 61:2 (2008), 52–60 (In Russian) | MR

[7] V. R. Barseghyan, L. A. Movsisyan, “Optimal Control of the Vibration of Elastic Systems Described by the Wave Equation”, Int. Appl. Mech., 48:2 (2012), 234–239 | DOI | MR

[8] V. R. Barseghyan, “O zadache granichnogo upravleniya kolebaniyami struny s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Fundamental’nyye problemy teoreticheskoy i prikladnoy mekhaniki, XI Vserosssiyskiy s”yezd po fundamental’nym problemam teoreticheskoy i prikladnoy mekhaniki (Kazan', 2015), Sbornik trudov, 2015, 354–356 (In Russian)

[9] V. R. Barseghyan, “On one problem of optimal boundary control of string vibrations with restrictions in the intermediate moment of time”, Analytical Mechanics, Stability and Motion Control, XI International Chetaev Conference “Analytical Mechanics, Stability and Motion Control” (Irkutsk, 2017), Conference proceedings, v. 3, 2017, 119–125 (In Russian)

[10] A. A. Andreev, S. V. Leksina, “The boundary control problem for the system of wave equations”, Vestn. Sam. gos. tekhn. un-ta, Ser. Fiz.-mat. nauki, 2008, no. 1(16), 5–10 (In Russian) | Zbl

[11] M. F. Abdukarimov, “On optimal boundary control of forced oscillations of the displacements at the two ends strings”, Dokl. AN Respubliki Tadzhikistan, 56:8 (2013), 612–618 (In Russian) | MR

[12] N. V. Gibkina, M. V. Sidorov, A. V. Stadnikova, “Optimal`noe granichnoe upravlenie kolebaniyami odnorodnoj struny”, Radioelektronika i Informatika, 2016, no. 2, 3–11 (In Russian)

[13] V. I. Korzyuk, I. S. Kozlovskaya, “Two-point boundary problem for string oscillation equationwith given velocity in arbitrary point of time. I”, Tr. Inst. Mat., 18:2 (2010), 22–35 (In Russian)

[14] V. I. Korzyuk, I. S. Kozlovskaya, “Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of time. II”, Tr. Inst. Mat., 19:1 (2011), 62–70 (In Russian) | MR | Zbl

[15] A. N. Tihonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, Moscow, 1977 (In Russian) | MR

[16] V. R. Barseghyan, Control of Composite Dynamic Systems and Systems with Multipoint Intermediate Conditions, Nauka, Moscow, 2016 (In Russian)

[17] V. R. Barsegyan, T. V. Barsegyan, “Ob odnom podkhode k resheniyu zadach upravleniya dinamicheskikh sistem s nerazdelennymi mnogotochechnymi promezhutochnymi usloviyami”, Avtomatika i telemekhanika, 2015, no. 4, 3–15

[18] V. I. Zubov, Lekcii po Teorii Upravleniya, Nauka, Moscow, 1975 (In Russian)