On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 123-130
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a functional-differential operator \begin{equation*} \mathcal{L} u = (1/\rho)\left(-(pu')'+\int_0^l u(s)d_s r(x,s)\right) \end{equation*} with symmetry, the completeness and orthogonality of the eigenfunctions is shown. The positivity conditions of the Green function of the periodic boundary value problem are obtained.
Mots-clés : positive solutions
Keywords: spectral properties.
@article{VTAMU_2020_25_130_a1,
     author = {M. J. Alves and S. M. Labovski},
     title = {On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {123--130},
     year = {2020},
     volume = {25},
     number = {130},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a1/}
}
TY  - JOUR
AU  - M. J. Alves
AU  - S. M. Labovski
TI  - On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 123
EP  - 130
VL  - 25
IS  - 130
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a1/
LA  - ru
ID  - VTAMU_2020_25_130_a1
ER  - 
%0 Journal Article
%A M. J. Alves
%A S. M. Labovski
%T On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 123-130
%V 25
%N 130
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a1/
%G ru
%F VTAMU_2020_25_130_a1
M. J. Alves; S. M. Labovski. On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 123-130. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a1/

[1] S. Labovskiy, “On spectral problem and positive solutions of a linear singular functional-differential equation”, Functional Differential Equations, 20:3-4 (2013), 179–200 | MR | Zbl

[2] S. M. Labovskiĭ, “On the Sturm-Liouville problem for a linear singular functional-differential equation”, Russ. Math., 40:11 (1996), 50-56 | MR | Zbl

[3] S. Labovskii, “Little vibrations of an abstract mechanical system and corresponding eigenvalue problem”, Functional Differential Equations, 6:1-2 (1999), 155-167 | MR | Zbl

[4] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations. Methods and Applications, Hindawi Publishing Corporation, New York, 2007 | MR | Zbl