Keywords: filtering, maximum cross section method, stochastic differential equation, system with variable structure, system with random structure, statistical modeling, particle filter.
@article{VTAMU_2020_25_130_a0,
author = {T. A. Averina and K. A. Rybakov},
title = {Statistical filtering algorithms for systems with random structure},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {109--122},
year = {2020},
volume = {25},
number = {130},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a0/}
}
TY - JOUR AU - T. A. Averina AU - K. A. Rybakov TI - Statistical filtering algorithms for systems with random structure JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 109 EP - 122 VL - 25 IS - 130 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a0/ LA - ru ID - VTAMU_2020_25_130_a0 ER -
T. A. Averina; K. A. Rybakov. Statistical filtering algorithms for systems with random structure. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 130, pp. 109-122. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_130_a0/
[1] T. A. Averina, K. A. Rybakov, “Using the maximum cross section method in random processes estimation problems”, Int. Conf. on Advanced Mathematics, Computations and Applications, AMCA-2019, Marchuk Scientific Readings, NSU Publ., Novosibirsk, 2019, 9–13 (In Russian)
[2] T. A. Averina, K. A. Rybakov, “Using maximum cross section method for filtering jump-diffusion random processes”, Rus. J. Numer. Anal. Math. Modelling, 35:2 (2020), 55–67 | MR | Zbl
[3] T. A. Averina, Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial'nykh uravnenii i sistem so sluchainoi strukturoi, Siberian Branch of the Russian Academy of Sciences Publ., Novosibirsk, 2019 (In Russian)
[4] A. Bain, D. Crisan, Fundamentals of Stochastic Filtering, Springer, New York, 2009 | MR | Zbl
[5] I. E. Kazakov, V. M Artem'ev, Optimizatsiya dinamicheskikh sistem sluchainoi struktury, Nauka, Moscow, 1980 (In Russian) | MR
[6] X. R. Li, V. P. Jilkov, “Survey of maneuvering target tracking. Part V: Multiple-model methods”, IEEE Trans. Aerospace Electronic Syst., 41:4 (2005), 1255–1321 | DOI
[7] M. S. Yarlykov, S. M. Yarlykova, “Optimal algorithms for complex nonlinear processing of vector discrete-continuous signals”, Radioengineering, 2004, no. 7, 18–29 (In Russian)
[8] M. S. Yarlykov, S. M. Yarlykova, “The potential accuracy of synthesized suboptimal algorithms for complex nonlinear processing of vector discrete-continuous noises”, Radioengineering, 2007, no. 1, 46–61 (In Russian)
[9] I. M. Kosachev, Yu. E. Kuleshov, “Methodology of high-precision optimal filtering of random processes observed in stochastic dynamical systems with random structure. Part 1”, Military Academy of the Republic of Belarus Proceedings, 2016, no. 3 (52), 57–66 (In Russian)
[10] I. M. Kosachev, Yu. E. Kuleshov, “Methodology of high-precision optimal filtering of random processes observed in stochastic dynamical systems with random structure. Part 2”, Military Academy of the Republic of Belarus Proceedings, 2016, no. 4 (53), 64–73 (In Russian)
[11] I. M. Kosachev, Yu. E. Kuleshov, “Methodology of high-precision optimal filtering of random processes observed in stochastic dynamical systems with random structure. Part 3”, Military Academy of the Republic of Belarus Proceedings, 2017, no. 1 (54), 56–65 (In Russian)
[12] E. A. Rudenko, “Konechnomernye rekurrentnye algoritmy optimalnoi nelineinoi logiko-dinamicheskoi filtratsii”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2016, no. 1, 43–65 | Zbl
[13] K. A. Rybakov, A. A. Yushchenko, “Continuous particle filters and its real-time implementation”, Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, 2018, no. 3, 56–64 (In Russian)
[14] F. Karamé, “A new particle filtering approach to estimate stochastic volatility models with Markov-switching”, Econometrics and Statistics, 8:C (2018), 204–230 | DOI | MR
[15] T. Lux, “Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models”, Economics Working Paper, 2018-07 (2018), 1–43
[16] V. A. Bukhalev, Raspoznavanie, otsenivanie i upravlenie v sistemakh so sluchainoi skachkoobraznoi strukturoi, Fizmatlit, Moscow, 1996 (In Russian)
[17] V. A. Bukhalev, A. A. Skrynnikov, V. A. Boldinov, Algoritmicheskaya pomekhozashchita bespilotnykh letatel'nykh apparatov, Fizmatlit, Moscow, 2018 (In Russian)
[18] M. Ghosh, A. Arapostathis, S. Marcus, “Optimal control of switching diffusions with application to flexible manufacturing systems”, SIAM J. Control Optim., 31:5 (1993), 1183–1204 | DOI | MR | Zbl
[19] A. P. Trifonov, Yu. S. Shinakov, Sovmestnoe razlichenie signalov i otsenka ikh parametrov na fone pomekh, Radio i svyaz', Moscow, 1986 (In Russian) | MR
[20] K. A. Rybakov, “Calculation of weight coefficients in continuous particle filter”, Civil Aviation High Technologies, 21:2 (2018), 32–39 (In Russian)
[21] N. V. Chernykh, P. V. Pakshin, “Algoritmy chislennogo resheniya stokhasticheskikh differentsialnykh sistem s pereklyuchaemoi diffuziei”, Upravlenie bolshimi sistemami, 2012, no. 36, 106–143 ; N. V. Chernykh, P. V. Pakshin, “Numerical solution algorithms for stochastic differential systems with switching diffusion”, Autom. Remote Control, 74:12 (2013), 2037–2063 | DOI | MR | Zbl
[22] T. A. Averina, K. A. Rybakov, “Modeling of multistructural systems on manifolds for statistical analysis and filtering problems”, Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018), 145–153 (In Russian)
[23] T. A. Averina, “Construction and justification of statistical algorithms for simulation of switching diffusion, given by stochastic differential equations”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 986–991 (In Russian)
[24] T. A. Averina, “Ispolzovanie modifikatsii metoda maksimalnogo secheniya dlya modelirovaniya sistem so sluchainoi strukturoi s raspredelennymi perekhodami”, Sibirskii zhurnal vychislitelnoi matematiki, 19:3 (2016), 235–247 | MR | Zbl