On the implicit and inverse many-valued functions in topological spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 384-392
Voir la notice de l'article provenant de la source Math-Net.Ru
The conditions of continuity of the implicit set-valued map and the inverse set-valued map acting in topological spaces are proposed.
For given mappings $ f: T \times X \to Y, $ $ y: T \to Y, $ where $ T, X, Y $ are topological spaces, the space $ Y $ is Hausdorff, the equation $$ f (t , x) = y (t) $$ with the parameter $ t \in T $ relative to the unknown $ x \in X $ is considered. It is assumed that for some multi-valued map $ U: T \rightrightarrows X $ for all $ t \in T $ the inclusion $ f (t, U (t)) \ni y (t)$ is satisfied. An implicit mapping $ \mathfrak {R} _U: T \rightrightarrows X, $ which associates with each value of the parameter $ t \in T $ the set of solutions $ x (t) \in U (t) $ of this equation. It is proved that $ \mathfrak {R} _U $ is upper semicontinuous at the point $ t_0 \in T, $ if the following conditions are satisfied: for any $ x \in X $ the map $ f $ is continuous at $ (t_0, x), $ the map $ y $ is continuous at $ t_0, $ a multi-valued map
$ U $ is upper semicontinuous at the point $ t_0 $ and the set $ U (t_0) \subset X $ is compact. If, in addition, with the value of the parameter $ t_0 $, the solution to the equation is unique, then the map $ \mathfrak {R} _U $ is continuous at $ t_0 $ and any section of this map is also continuous at $ t_0. $
The listed results are applied to the study of a multi-valued inverse mapping. Namely, for a given map $ g: X \to T $ we consider the equation $ g (x) = y $ with respect to the unknown $ x \in X. $ We obtain conditions for upper semicontinuity and continuity of the map $ \mathfrak {V} _U: T \rightrightarrows X, $ $ \mathfrak {V} _U (t) = \{x \in U (t): \, g (x) = t \}, $ $ t \in T. $
Keywords:
implicit function; inverse function; multi-valued mapping; upper semicontinuity; parameter.
@article{VTAMU_2019_24_128_a4,
author = {E. S. Zhukovskiy and Zh. Munembe},
title = {On the implicit and inverse many-valued functions in topological spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {384--392},
publisher = {mathdoc},
volume = {24},
number = {128},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/}
}
TY - JOUR AU - E. S. Zhukovskiy AU - Zh. Munembe TI - On the implicit and inverse many-valued functions in topological spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 384 EP - 392 VL - 24 IS - 128 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/ LA - ru ID - VTAMU_2019_24_128_a4 ER -
%0 Journal Article %A E. S. Zhukovskiy %A Zh. Munembe %T On the implicit and inverse many-valued functions in topological spaces %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 384-392 %V 24 %N 128 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/ %G ru %F VTAMU_2019_24_128_a4
E. S. Zhukovskiy; Zh. Munembe. On the implicit and inverse many-valued functions in topological spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 384-392. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/