On the implicit and inverse many-valued functions in topological spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 384-392
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conditions of continuity of the implicit set-valued map and the inverse set-valued map acting in topological spaces are proposed. For given mappings $ f: T \times X \to Y, $ $ y: T \to Y, $ where $ T, X, Y $ are topological spaces, the space $ Y $ is Hausdorff, the equation $$ f (t , x) = y (t) $$ with the parameter $ t \in T $ relative to the unknown $ x \in X $ is considered. It is assumed that for some multi-valued map $ U: T \rightrightarrows X $ for all $ t \in T $ the inclusion $ f (t, U (t)) \ni y (t)$ is satisfied. An implicit mapping $ \mathfrak {R} _U: T \rightrightarrows X, $ which associates with each value of the parameter $ t \in T $ the set of solutions $ x (t) \in U (t) $ of this equation. It is proved that $ \mathfrak {R} _U $ is upper semicontinuous at the point $ t_0 \in T, $ if the following conditions are satisfied: for any $ x \in X $ the map $ f $ is continuous at $ (t_0, x), $ the map $ y $ is continuous at $ t_0, $ a multi-valued map $ U $ is upper semicontinuous at the point $ t_0 $ and the set $ U (t_0) \subset X $ is compact. If, in addition, with the value of the parameter $ t_0 $, the solution to the equation is unique, then the map $ \mathfrak {R} _U $ is continuous at $ t_0 $ and any section of this map is also continuous at $ t_0. $ The listed results are applied to the study of a multi-valued inverse mapping. Namely, for a given map $ g: X \to T $ we consider the equation $ g (x) = y $ with respect to the unknown $ x \in X. $ We obtain conditions for upper semicontinuity and continuity of the map $ \mathfrak {V} _U: T \rightrightarrows X, $ $ \mathfrak {V} _U (t) = \{x \in U (t): \, g (x) = t \}, $ $ t \in T. $
Keywords: implicit function; inverse function; multi-valued mapping; upper semicontinuity; parameter.
@article{VTAMU_2019_24_128_a4,
     author = {E. S. Zhukovskiy and Zh. Munembe},
     title = {On the implicit and inverse many-valued functions in topological spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {384--392},
     year = {2019},
     volume = {24},
     number = {128},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - Zh. Munembe
TI  - On the implicit and inverse many-valued functions in topological spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 384
EP  - 392
VL  - 24
IS  - 128
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/
LA  - ru
ID  - VTAMU_2019_24_128_a4
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A Zh. Munembe
%T On the implicit and inverse many-valued functions in topological spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 384-392
%V 24
%N 128
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/
%G ru
%F VTAMU_2019_24_128_a4
E. S. Zhukovskiy; Zh. Munembe. On the implicit and inverse many-valued functions in topological spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 384-392. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a4/

[1] Yu. G. Borisovich, B. D. Gelman, A. D. Mishkis, V. V. Obuhovskii, Vvedenie v Teoriyu Mnogoznachnih Otobrajenii i Differencialnih Vklyuchenii, 2 ed., LIBROKOM, Moscow, 2011, 224 pp. (In Russian) | MR

[2] V. M. Alekseev, V. M. Tihomirov, S. V. Fomin, Optimal'noe Upravlenie, Nauka, Moscow, 1979 (In Russian) | MR

[3] A. V. Arutyunov, “An implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | MR | Zbl

[4] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings. A View from Variational Analysis, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2009 | MR | Zbl

[5] S. E. Zhukovskiy, T. T. Ngok, “Existence of inverse function in a neighbourhood of a critical value”, Tambov University Reports. Series: Natural and Technical Sciences, 24:126 (2019), 141–149 (In Russian) | DOI

[6] A. V. Arutyunov, Lectures on convex and multivalued analysis, Fizmatlit, Moscow, 2014 (In Russian)

[7] L. V. Kantorovich, G. P. Akilov, Funktsional'nyj Analiz, Nauka, Moscow, 1984, 752 pp. (In Russian) | MR