Decomposition of boundary representations on the Lobachevsky plane associated with linear bundles
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 368-375

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier we described canonical (labelled by $\lambda\in \Bbb C$) and accompanying boundary representations of the group $G={\rm {SU}} \, (1,1)$ on the Lobachevsky plane $D$ in sections of linear bundles and decomposed canonical representations into irreducible ones. Now we decompose representations acting on distributions concentrated at the boundary of $D$. In the generic case $2\lambda\notin \Bbb N$ they are diagonalizable, in the exceptional case Jordan blocks appear.
Keywords: Lobachevsky plane; canonical representations; distributions; boundary representations; Poisson transforms.
@article{VTAMU_2019_24_128_a2,
     author = {L. I. Grosheva},
     title = {Decomposition of boundary representations on the {Lobachevsky} plane  associated with linear bundles},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {368--375},
     publisher = {mathdoc},
     volume = {24},
     number = {128},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a2/}
}
TY  - JOUR
AU  - L. I. Grosheva
TI  - Decomposition of boundary representations on the Lobachevsky plane  associated with linear bundles
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 368
EP  - 375
VL  - 24
IS  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a2/
LA  - ru
ID  - VTAMU_2019_24_128_a2
ER  - 
%0 Journal Article
%A L. I. Grosheva
%T Decomposition of boundary representations on the Lobachevsky plane  associated with linear bundles
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 368-375
%V 24
%N 128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a2/
%G ru
%F VTAMU_2019_24_128_a2
L. I. Grosheva. Decomposition of boundary representations on the Lobachevsky plane  associated with linear bundles. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 368-375. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a2/