The pseudospectrum of the convention-diffusion operator with a variable reaction term
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 354-367
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the spectrum of non-self-adjoint convection-diffusion operator with a variable reaction term defined on an unbounded open set $\Omega$ of $\mathbb{R}^n.$ Our idea is to build a family of operators that have the same convection-diffusion-reaction formula, but which will be defined on bounded open sets $\left\{\Omega_{\eta}\right\}_{\eta\in\left]0,1\right[}$ of $\mathbb{R}^n.$ Based on the relationships that link this family to $\Omega,$ we obtain relations between the spectrum and the pseudospectrum. We use the notion of the pseudospectrum to build relationships between convection-diffusion operator and its restrictions to bounded domains. Using these relationships we are able to find the spectrum of our operator in $\mathbb{R}^+.$ Also, the techniques developed to obtain the spectrum allow us to study the properties of the spectrum of this operator when we go to the limit as the reaction term tends to zero. Indeed, we show a spectral localization result for the same convection-diffusion-reaction operator when a perturbation is carried on the reaction term and no longer on the definition domain.
Keywords:
differential operator; spectrum; pseudospectrum; convention-diffusion operator.
@article{VTAMU_2019_24_128_a1,
author = {H. Guebbai and S. Segni and M. Ghiat and W. Merchela},
title = {The pseudospectrum of the convention-diffusion operator with a variable reaction term},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {354--367},
publisher = {mathdoc},
volume = {24},
number = {128},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a1/}
}
TY - JOUR AU - H. Guebbai AU - S. Segni AU - M. Ghiat AU - W. Merchela TI - The pseudospectrum of the convention-diffusion operator with a variable reaction term JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 354 EP - 367 VL - 24 IS - 128 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a1/ LA - ru ID - VTAMU_2019_24_128_a1 ER -
%0 Journal Article %A H. Guebbai %A S. Segni %A M. Ghiat %A W. Merchela %T The pseudospectrum of the convention-diffusion operator with a variable reaction term %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 354-367 %V 24 %N 128 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a1/ %G ru %F VTAMU_2019_24_128_a1
H. Guebbai; S. Segni; M. Ghiat; W. Merchela. The pseudospectrum of the convention-diffusion operator with a variable reaction term. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 354-367. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a1/