The Jacobi group and its holomorphic discrete series representations on Siegel–Jacobi domains
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 345-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is the summary of a part of the talk delivered at the workshop held at the Tambov University in September 2012, reporting several results on Jacobi groups and its holomorphic representations published by the authors.
Keywords: Jacobi group; Siegel–Jacobi domain; canonical automorphy factor; canonical kernel function; scalar holomorphic discrete series.
@article{VTAMU_2019_24_128_a0,
     author = {S. Berceanu and A. Gheorghe},
     title = {The {Jacobi} group and its holomorphic discrete series representations on {Siegel{\textendash}Jacobi} domains},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {345--353},
     year = {2019},
     volume = {24},
     number = {128},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a0/}
}
TY  - JOUR
AU  - S. Berceanu
AU  - A. Gheorghe
TI  - The Jacobi group and its holomorphic discrete series representations on Siegel–Jacobi domains
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 345
EP  - 353
VL  - 24
IS  - 128
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a0/
LA  - ru
ID  - VTAMU_2019_24_128_a0
ER  - 
%0 Journal Article
%A S. Berceanu
%A A. Gheorghe
%T The Jacobi group and its holomorphic discrete series representations on Siegel–Jacobi domains
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 345-353
%V 24
%N 128
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a0/
%G ru
%F VTAMU_2019_24_128_a0
S. Berceanu; A. Gheorghe. The Jacobi group and its holomorphic discrete series representations on Siegel–Jacobi domains. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 345-353. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a0/

[1] S. Berceanu, “A holomorphic representation of the Jacobi algebra”, Reviews in Mathematical Physics, 18:2 (2006), 163–199, arXiv: math/0408219v3 | DOI | MR | Zbl

[2] S. Berceanu, “Coherent states associated to the Jacobi group – a variation on a theme by Erich Kähler”, Journal of Geometry and Symmetry in Physics, 9 (2007), 1–8 | DOI | MR | Zbl

[3] S. Berceanu, “A holomorphic representation of Jacobi algebra in several dimensions”, The Theta Foundation, Perspectives in Operator Algebras and Mathematical Physics (Bucharest, August 10–17, 2005), Conference Proceedings, Theta Series in Advanced Mathematics, 11, eds. F. P. Boca, R. Purice, S. Strǎtilǎ, 2008, 1–25 | MR

[4] S. Berceanu, A. Gheorghe, “Applications of the Jacobi group to Quantum Mechanics”, Romanian Journal of Physics, 53:9–10 (2008), 1013–1021 | MR | Zbl

[5] S. Berceanu and A. Gheorghe, “On the geometry of Siegel-Jacobi domains”, International Journal of Geometric Methods in Modern Physics, 8 (2011), 1783–1798 | DOI | MR | Zbl

[6] S. Berceanu, “A convenient coordinatization of Siegel–Jacobi domains”, Reviews in Mathematical Physics, 24:10 (2012), 1–38 | DOI | MR

[7] S. Berceanu, “Consequences of the fundamental conjecture for the motion on the Siegel-Jacobi disk”, International Journal of Geometric Methods in Modern Physics, 10:01 (2013), 1–18 | DOI | MR | Zbl

[8] F. A. Berezin, “Quantization in complex symmetric spaces”, Math. USSR-Izv., 9:2 (1975), 341–379 | DOI | MR

[9] R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163, Birkhäuser, Basel, 1998, 216 pp. | DOI | MR | Zbl

[10] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhäuser, Boston, 1985 | DOI | MR | Zbl

[11] P. Kramer and M. Saraceno, “Semicoherent states and the group $\text{ISp}(2,\mathbb{R})$”, Physica A: Statistical Mechanics and its Applications, 114:1–3 (1982), 448–453 | DOI | MR

[12] M. H. Lee, “Theta functions on hermitian symmetric domains and Fock representations”, Journal of the Australian Mathematical Society, 74:2 (2003), 201–234 | DOI | MR | Zbl

[13] A. M. Perelomov, Generalized Coherent States and their Applications, Springer, Berlin, 1986 | MR | Zbl

[14] C. Quesne, “Vector coherent state theory of the semidirect sum Lie algebras wsp $(2N,\mathbb{R})$”, Journal of Physics A: Mathematical and General, 23:6 (1990), 847–862 | DOI | MR | Zbl

[15] I. Satake, “Unitary representations of a semi-direct products of Lie groups on $\overline{\partial}$-cohomology spaces”, Mathematische Annalen, 190:3 (1971), 177–202 | DOI | MR

[16] I. Satake, Algebraic Structures of Symmetric Domains, Princeton University Press, Princeton, 1980 | MR | Zbl

[17] K. Shuman, “Complete signal processing bases and the Jacobi group”, Journal of Mathematical Analysis and Applications, 278:1 (2003), 203–213 | DOI | MR | Zbl

[18] K. Takase, “A note on automorphic forms”, J. Reine Angew. Math., 409 (1990), 138–171 | MR | Zbl

[19] K. Takase, “On unitary representations of Jacobi groups”, J. Reine Angew. Math., 430 (1992), 130–149 | MR

[20] K. Takase, “On Siegel modular forms of half-integral weights and Jacobi forms”, Trans. Amer. Math. Soc., 351:2 (1999), 735–780 | DOI | MR | Zbl

[21] J.-H. Yang, “The method of orbits for real Lie groups”, Kyungpook Mathematical Journal, 42:2 (2002), 199–272 | MR | Zbl

[22] J.-H. Yang, “A partial Cayley transform for Siegel-Jacobi disk”, Journal of the Korean Mathematical Society, 45 (2008), 781–794 | DOI | MR | Zbl

[23] C. Ziegler, “Jacobi forms of higher degree”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 59:1 (1989), 191–224 | DOI | MR | Zbl