@article{VTAMU_2019_24_127_a7,
author = {Ya. Elsaev},
title = {On a dilation of a some class of completely positive maps},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {333--339},
year = {2019},
volume = {24},
number = {127},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a7/}
}
Ya. Elsaev. On a dilation of a some class of completely positive maps. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 333-339. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a7/
[1] A. V. Kalinichenko, I. N. Maliev, M. A. Pliev, “Modular sesquilinear forms and generalized stinespring representation”, Russian Mathematics, 62:12 (2018), 42–49 | DOI | MR | MR | Zbl
[2] I. N. Maliev, M. A. Pliev, “A stinespring type representation for operators in Hilbert modules over local $C*$-algebras”, Russian Mathematics, 56:12 (2012), 43–49 | DOI | MR | Zbl
[3] M. A. Pliev, I. D. Tsopanov, “On representation of Stinespring’s type for $n$-tuples of completely positive maps in Hilbert $C^*$-modules”, Russian Mathematics, 58:11 (2014), 36–42 | DOI | MR | Zbl
[4] J. P. Pellonpaa, K. Ylinen, “Modules, completely positive maps, and a generalized KSGNS construction”, Positivity, 15:3 (2011), 509–525 | DOI | MR | Zbl
[5] M. S. Moslehian, A. G. Kusraev, M. A. Pliev, “Matrix KSGNS construction and a Radon-Nikodym type theorem”, Indagationes Mathematicae, 28:5 (2017), 938–952 | DOI | MR | Zbl
[6] F. Stinspring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | MR
[7] D. A. Dubin, J. Kiukas, J. P. Pellonpaa, K. Ylinen, “Operator integrals and sesquilinear forms”, Journal of Mathematical Analysis and Applications, 413 (2014), 250–268 | DOI | MR | Zbl
[8] V. Manuilov, E. Troitsky, Hilbert $C^{*}$-modules, American Mathematical Society, Providence, 2005 | MR
[9] G. J. Murphy, $C^{*}$-Algebras and Operator Theory, Academic Press, Inc., San Diego; Academic Press Limited, London, 1990 | MR
[10] M. Fragoulopoulou, Topological Algebras with Involution, v. 200, 1st ed., Elsevier, North Holland, 2005 | MR | Zbl