Bergman–Hartogs domains and their automorphisms
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 316-323
Cet article a éte moissonné depuis la source Math-Net.Ru
For Cartan–Hartogs domains and also for Bergman–Hartogs domains, the determination of their automorphism groups is given for the cases when the base is any bounded symmetric domain and a general bounded homogeneous domain respectively.
Keywords:
bounded symmetric domains, bounded homogeneous domain, automorphisms.
@article{VTAMU_2019_24_127_a5,
author = {G. Roos},
title = {Bergman{\textendash}Hartogs domains and their automorphisms},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {316--323},
year = {2019},
volume = {24},
number = {127},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a5/}
}
G. Roos. Bergman–Hartogs domains and their automorphisms. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 316-323. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a5/
[1] Heungju Ahn, Jisoo Byun, Jong-Do Park, “Automorphisms of the Hartogs type domains over classical symmetric domains”, International Journal of Mathematics, 23:9 (2012), 1–11 | MR
[2] Jean-Pierre Rosay, “Sur une caractérisation de la boule parmi les domaines de $\mathbb{C}^{n}$ par son groupe d'automorphismes”, Annales de l’institut Fourier, 29:4 (1979), 91–97 | DOI | MR | Zbl
[3] Yin Weiping, Lu Keping, Roos Guy, “New classes of domains with explicit Bergman kernel”, Science in China. Series A: Mathematics, 47:3 (2004), 352–371 | DOI | MR | Zbl