On the solvability of causal functional inclusions with infinite delay
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 293-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present article we develop the results of works devoted to the study of problems for functional differential equations and inclusions with causal operators, in case of infinite delay. In the introduction of the article we substantiates the relevance of the research topic and provides links to relevant works A. N. Tikhonov, C. Corduneanu, A. I. Bulgakov, E. S. Zhukovskii, V. V. Obukhovskii and P. Zecca. In section two we present the necessary information from the theory of condensing multivalued maps and measures of noncompactness, also introduced the concept of a multivalued causal operator with infinite delay and illustrated it by examples. In the next section we formulate the Cauchy problem for functional inclusion, containing the composition of multivalued and single-valued causal operators; we study the properties of the multiopera-tor whose fixed points are solutions of the problem. In particular, sufficient conditions under which this multioperator is condensing on the respective measures of noncompacness. On this basis, in section four we prove local and global results and continuous dependence of the solution set on initial data. Next the case of inclusions with lower semicontinuous causal multioperators is considered. In the last section we generalize some results for semilinear differential inclusions and Volterra integro-differential inclusions with infinite delay.
Keywords: causal operator; functional inclusion; Cauchy problem; Volterra integro-differential inclusion; measure of noncompactness; fixed point; condensing map.
@article{VTAMU_2019_24_127_a4,
     author = {M. M. Kulmanakova and E. L. Ulianova},
     title = {On the solvability of causal functional inclusions with infinite delay},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {293--315},
     year = {2019},
     volume = {24},
     number = {127},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/}
}
TY  - JOUR
AU  - M. M. Kulmanakova
AU  - E. L. Ulianova
TI  - On the solvability of causal functional inclusions with infinite delay
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 293
EP  - 315
VL  - 24
IS  - 127
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/
LA  - ru
ID  - VTAMU_2019_24_127_a4
ER  - 
%0 Journal Article
%A M. M. Kulmanakova
%A E. L. Ulianova
%T On the solvability of causal functional inclusions with infinite delay
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 293-315
%V 24
%N 127
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/
%G ru
%F VTAMU_2019_24_127_a4
M. M. Kulmanakova; E. L. Ulianova. On the solvability of causal functional inclusions with infinite delay. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 293-315. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/

[1] A. N. Tikhonov, “On functional equations of Volterra type and their applications to some problems of mathematical physics”, Byull. Mosk. un-ta, 1, Sect A. Vyp 8 (1938), 1–25 (In Russian)

[2] C. Corduneanu, Functional Equations with Causal Operators. Stability and Control: Theory, Methods and Applications, 2002 | MR

[3] T. V. Zhukovskaya, E. S. Zhukovskiy, “About Volterra operators in Banach function space”, Tambov University Reports. Series: Natural and Technical Sciences, 6:2 (2001), 147–149 (In Russian)

[4] E. S. Zhukovskii, M. Zh. Alvesh, “Abstraktnye volterrovy operatory”, Izv. vuzov. Matem., 2008, no. 3, 3–17 | Zbl

[5] E. S. Zhukovskii, “K teorii uravnenii Volterra”, Differentsialnye uravneniya, 25:9 (1989), 1599–1605 | MR

[6] E. S. Zhukovskiy, “Non-linear Volterra equation in a Banach functional space”, Izv. vuzov. Matem., 2005, no. 10, 17–28 (In Russian) | Zbl

[7] A. I. Bulgakov, A. A. Grigorenko, E. A. Panasenko, “Perturbations of Volterra inclusions by pulse operators”, Izvestiya In-ta matem. i inform. UdGU, 1:39 (2012), 17–20 (In Russian) | Zbl

[8] A. I. Bulgakova, V. P. Maksimov, “Functional and functional-differential inclusions with Volterra operators”, Differ. Uravn., 17:8 (1981), 1362–1374 (In Russian) | MR

[9] E. O. Burlakov, E. S. Zhukovskiy, “Continuous dependence on parameters of solutions Volterra equations with locally compressing operators”, Izv. vuzov. Matem., 2010, no. 8, 16–29 (In Russian) | Zbl

[10] E. S. Zhukovskiy, “Generalized Volterra operators in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 14:3 (2009), 501–508 (In Russian)

[11] V. Obukhovskiii, P. Zecca, “On certain classes of functional inclusions with causal operators in Banach spaces”, Nonlinear Anal., 74:8 (2011), 2765–2777 | DOI | MR

[12] Y. G. Borisovich, B. D. Gel'man, A. D. Myshkis, V. V. Obukhovskii, Introduction to the theory multivalued mappings and differential inclusions, Moscow, 2 ed., LIBROKOM, 2011 (In Russian) | MR

[13] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin-New York, 2001 | MR

[14] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1(211) (1980), 59–126 | MR | Zbl

[15] J. K. Hale, J. Kato, “Phase space for retarded equations with infinite delay”, Funkc. Ekvac., 1978, no. 21, 11–41 | MR | Zbl

[16] Y. Hito, S. Murakami, T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin-Heidelberg-New York, 1991 | MR

[17] K. Deimling, Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[18] A. Bressan, G. Colombo, “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | DOI | MR | Zbl

[19] A. Fryszkowski, “Continuous selections for a class of nonconvex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | DOI | MR | Zbl