@article{VTAMU_2019_24_127_a4,
author = {M. M. Kulmanakova and E. L. Ulianova},
title = {On the solvability of causal functional inclusions with infinite delay},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {293--315},
year = {2019},
volume = {24},
number = {127},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/}
}
TY - JOUR AU - M. M. Kulmanakova AU - E. L. Ulianova TI - On the solvability of causal functional inclusions with infinite delay JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 293 EP - 315 VL - 24 IS - 127 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/ LA - ru ID - VTAMU_2019_24_127_a4 ER -
M. M. Kulmanakova; E. L. Ulianova. On the solvability of causal functional inclusions with infinite delay. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 293-315. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a4/
[1] A. N. Tikhonov, “On functional equations of Volterra type and their applications to some problems of mathematical physics”, Byull. Mosk. un-ta, 1, Sect A. Vyp 8 (1938), 1–25 (In Russian)
[2] C. Corduneanu, Functional Equations with Causal Operators. Stability and Control: Theory, Methods and Applications, 2002 | MR
[3] T. V. Zhukovskaya, E. S. Zhukovskiy, “About Volterra operators in Banach function space”, Tambov University Reports. Series: Natural and Technical Sciences, 6:2 (2001), 147–149 (In Russian)
[4] E. S. Zhukovskii, M. Zh. Alvesh, “Abstraktnye volterrovy operatory”, Izv. vuzov. Matem., 2008, no. 3, 3–17 | Zbl
[5] E. S. Zhukovskii, “K teorii uravnenii Volterra”, Differentsialnye uravneniya, 25:9 (1989), 1599–1605 | MR
[6] E. S. Zhukovskiy, “Non-linear Volterra equation in a Banach functional space”, Izv. vuzov. Matem., 2005, no. 10, 17–28 (In Russian) | Zbl
[7] A. I. Bulgakov, A. A. Grigorenko, E. A. Panasenko, “Perturbations of Volterra inclusions by pulse operators”, Izvestiya In-ta matem. i inform. UdGU, 1:39 (2012), 17–20 (In Russian) | Zbl
[8] A. I. Bulgakova, V. P. Maksimov, “Functional and functional-differential inclusions with Volterra operators”, Differ. Uravn., 17:8 (1981), 1362–1374 (In Russian) | MR
[9] E. O. Burlakov, E. S. Zhukovskiy, “Continuous dependence on parameters of solutions Volterra equations with locally compressing operators”, Izv. vuzov. Matem., 2010, no. 8, 16–29 (In Russian) | Zbl
[10] E. S. Zhukovskiy, “Generalized Volterra operators in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 14:3 (2009), 501–508 (In Russian)
[11] V. Obukhovskiii, P. Zecca, “On certain classes of functional inclusions with causal operators in Banach spaces”, Nonlinear Anal., 74:8 (2011), 2765–2777 | DOI | MR
[12] Y. G. Borisovich, B. D. Gel'man, A. D. Myshkis, V. V. Obukhovskii, Introduction to the theory multivalued mappings and differential inclusions, Moscow, 2 ed., LIBROKOM, 2011 (In Russian) | MR
[13] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin-New York, 2001 | MR
[14] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1(211) (1980), 59–126 | MR | Zbl
[15] J. K. Hale, J. Kato, “Phase space for retarded equations with infinite delay”, Funkc. Ekvac., 1978, no. 21, 11–41 | MR | Zbl
[16] Y. Hito, S. Murakami, T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin-Heidelberg-New York, 1991 | MR
[17] K. Deimling, Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1, Walter de Gruyter, Berlin, 1992 | MR | Zbl
[18] A. Bressan, G. Colombo, “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | DOI | MR | Zbl
[19] A. Fryszkowski, “Continuous selections for a class of nonconvex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | DOI | MR | Zbl