On the extension of Chaplygin's theorem to the differential equations of neutral type
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 272-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider functional-differential equation $\dot{x}((g(t))=f\big(t,x(h(t))\big), \ t\in [0,1],$ where function $f$ satisfies the Caratheodory conditions, but not necessarily guarantee the boundedness of the respective superposition operator from the space of the essentially bounded functions into the space of integrable functions. As a result, we cannot apply the standard analysis methods (in particular the fixed point theorems) to the integral equivalent of the respective Cauchy problem. Instead, to study the solvability of such integral equation we use the approach based not on the fixed point theorems but on the results received in [A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy. Coincidence points principle for mappings in partially ordered spaces // Topology and its Applications, 2015, v. 179, No 1, 13–33] on the coincidence points of mappings in partially ordered spaces. As a result, we receive the conditions on the existence and estimates of the solutions of the Cauchy problem for the corresponding functional-differential equation similar to the well-known Chaplygin theorem. The main assumptions in the proof of this result are the non-decreasing function $f(t,\cdot)$ and the existence of two absolutely continuous functions $v,w,$ that for almost each $t\in [0,1]$ satisfy the inequalities $\dot{v}(g(t))\geq f\big(t,v(h(t))\big), $ $\dot{w}(g(t))\leq f\big(t,w(h(t))\big).$ The main result is illustrated by an example.
Keywords: coincidence point of mappings; partially ordered space; functional-differential equation; Cauchy problem; existence of solution; differential inequality theorem.
@article{VTAMU_2019_24_127_a2,
     author = {T. V. Zhukovskaya and O. V. Filippova and A. I. Shindyapin},
     title = {On the extension of {Chaplygin's} theorem to the differential equations of neutral type},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {272--280},
     year = {2019},
     volume = {24},
     number = {127},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a2/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - O. V. Filippova
AU  - A. I. Shindyapin
TI  - On the extension of Chaplygin's theorem to the differential equations of neutral type
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 272
EP  - 280
VL  - 24
IS  - 127
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a2/
LA  - ru
ID  - VTAMU_2019_24_127_a2
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A O. V. Filippova
%A A. I. Shindyapin
%T On the extension of Chaplygin's theorem to the differential equations of neutral type
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 272-280
%V 24
%N 127
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a2/
%G ru
%F VTAMU_2019_24_127_a2
T. V. Zhukovskaya; O. V. Filippova; A. I. Shindyapin. On the extension of Chaplygin's theorem to the differential equations of neutral type. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 272-280. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a2/

[1] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962; N. Dunford, J. T. Schwartz, Linear Operators, v. I, General Theory, Interscience publishers, New York, London, 1958 | MR | Zbl

[2] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations, V. I, II, Nauka, M., 1957, 1991 (In Russian) | MR

[3] A. Shindiapin, “On linear singular functional-differential equations in one functional space”, Abstract and Applied Analysis, 179:1 (2015), 13–33 | MR

[4] E. A. Pluzhnikova, A. I. Shindyapin, “On one method of studying implicit singular differential inclusions”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6-1 (2017), 1314–1320 (In Russian)

[5] A. I. Shindiapin, E. S. Zhukovskiy, “Covering mappings in the theory of implicit singular differential equations”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 21:6 (2016), 2107–2112

[6] T. V. Zhukovskaia, E. S. Zhukovskiy, “About antitone perturbations of covering mappings of ordered spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 21:2 (2016), 371–374 (In Russian)

[7] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[8] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 7 (2004), 567–575 | MR

[9] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Doklady Akademii nauk, 453:5 (2013), 475–478 | Zbl

[10] E. S. Zhukovskiǐ, “About orderly covering mappings and Chaplygin's type integral inequalities”, Algebra i Analiz, 30:1 (2018), 96–127 (In Russian)

[11] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differentsialnye uravneniya, 52:12 (2016), 1610–1627 | MR

[12] B. Z. Vulikh, Kratkii kurs teorii funktsii veschestvennoi peremennoi, V. I, II, Nauka, M., 1973