Asymptotics for the Radon transform on hyperbolic spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 241-251
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G/H$ be a hyperbolic space over $\Bbb R,$ $\Bbb C$ or $\Bbb H,$ and let $K$ be a maximal compact subgroup of $G.$ Let $D$ denote a certain explicit invariant differential operator, such that the non-cuspidal discrete series belong to the kernel of $D.$ For any $L^2$-Schwartz function $f$ on $G/H,$ we prove that the Abel transform ${\mathcal A}(Df)$ of $Df$ is a Schwartz function. This is an extension of a result established in [2] for $K$-finite and $K\cap H$-invariant functions.
Keywords:
hyperbolic spaces, cuspidal discrete series
Mots-clés : Radon transform, Abel transform.
Mots-clés : Radon transform, Abel transform.
@article{VTAMU_2019_24_127_a0,
author = {N. B. Andersen and M. Flensted-Jensen},
title = {Asymptotics for the {Radon} transform on hyperbolic spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {241--251},
year = {2019},
volume = {24},
number = {127},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a0/}
}
TY - JOUR AU - N. B. Andersen AU - M. Flensted-Jensen TI - Asymptotics for the Radon transform on hyperbolic spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 241 EP - 251 VL - 24 IS - 127 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a0/ LA - ru ID - VTAMU_2019_24_127_a0 ER -
N. B. Andersen; M. Flensted-Jensen. Asymptotics for the Radon transform on hyperbolic spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 127, pp. 241-251. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_127_a0/
[1] N. B. Andersen, M. Flensted-Jensen and H. Schlichtkrull, “Cuspidal discrete series for semisimple symmetric spaces”, Journal of Functional Analysis, 263:8 (2012), 2384–2408 | DOI | MR | Zbl
[2] N. B. Andersen, M. Flensted-Jensen, “Cuspidal discrete series for projective hyperbolic spaces”, Contemporary Mathematics, v. 598, Geometric Analysis and Integral Geometry, Amer Mathematical Society, Providence, 2013, 59–75 | DOI | MR | Zbl