A class of strongly stable approximation for unbounded operators
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 218-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive new sufficient conditions to solve the spectral pollution problem by using the generalized spectrum method. This problem arises in the spectral approximation when the approximate matrix may possess eigenvalues which are unrelated to any spectral properties of the original unbounded operator. We develop the theoretical background of the generalized spectrum method as well as illustrate its effectiveness with the spectral pollution. As a numerical application, we will treat the Schrödinger's operator where the discretization process based upon the Kantorovich's projection.
Keywords: eigenvalue approximation, generalized spectrum approximation, Schrödinger operator.
Mots-clés : spectral pollution
@article{VTAMU_2019_24_126_a7,
     author = {A. Khellaf and S. Benarab and H. Guebbai and W. Merchela},
     title = {A class of strongly stable approximation for unbounded operators},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {218--234},
     year = {2019},
     volume = {24},
     number = {126},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/}
}
TY  - JOUR
AU  - A. Khellaf
AU  - S. Benarab
AU  - H. Guebbai
AU  - W. Merchela
TI  - A class of strongly stable approximation for unbounded operators
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 218
EP  - 234
VL  - 24
IS  - 126
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/
LA  - ru
ID  - VTAMU_2019_24_126_a7
ER  - 
%0 Journal Article
%A A. Khellaf
%A S. Benarab
%A H. Guebbai
%A W. Merchela
%T A class of strongly stable approximation for unbounded operators
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 218-234
%V 24
%N 126
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/
%G ru
%F VTAMU_2019_24_126_a7
A. Khellaf; S. Benarab; H. Guebbai; W. Merchela. A class of strongly stable approximation for unbounded operators. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 218-234. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/

[1] M. Levitin, E. Shargorodsky, “Spectral pollution and second-order relative spectra for self-adjoint operators”, IMA J. Numer. Anal., 24:3 (2004), 393–416 | DOI | MR | Zbl

[2] E. B. Davies, “Spectral enclosures and complex resonances for general self-adjoint operators”, LMSJ. Comput. Math., 1:3 (1998), 42–-74 | DOI | MR | Zbl

[3] E. B. Davies, M. Plum, Spectral Pollution, 2002, arXiv: math/0302145v1 | MR

[4] S. Bögli, “Convergence of sequences of linear operators and their spectra”, Integral Equations Operator Theory, 88:3 (2017), 559–599 | DOI | MR | Zbl

[5] J. Hinchcliffe, M. Strauss, S. E. Zhukovskiy, “Spectral enclosure and superconvergence for eigenvalues in gaps”, Integral Equations Operator Theory, 84:1 (2016), 1–32 | DOI | MR | Zbl

[6] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii Journal of Mathematics, 34:3 (2013), 45–60 | DOI | MR | Zbl

[7] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, California, 2005 | MR | Zbl

[8] I. Gohberg, I. S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, v. I, Springer Basel AG, M., 1990 | MR

[9] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York., 2001 | MR | Zbl

[10] M. T. Nair, “On strongly stable approximation”, J. Austral. Math. Soc, 52:2 (1992), 251–260 | DOI | MR | Zbl

[11] A. Khellaf, H. Guebbai, S. Lemita, M. Z. Aissaoui, “Eigenvalues computation by the generalized spectrum method of Schrödinger's operator”, Computational and Applied Mathematics, 37:5 (2018), 5965–5980 | DOI | MR | Zbl

[12] G. F. Roach, Green's Functions, Cambridge University Press, New York., 1982 | MR | Zbl

[13] A. Aslanyan, E. B. Davies, “Spectral instability for some Schrödinger operators”, E. Numer. Math., 85:4 (2000), 525–552 | DOI | MR | Zbl

[14] H. Guebbai, A. Largillier, “Spectra and pseudospectra of convection-diffusion operator”, Lobachevskii Journal of Mathematics, 33:3 (2012), 274–283 | DOI | MR | Zbl