Mots-clés : spectral pollution
@article{VTAMU_2019_24_126_a7,
author = {A. Khellaf and S. Benarab and H. Guebbai and W. Merchela},
title = {A class of strongly stable approximation for unbounded operators},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {218--234},
year = {2019},
volume = {24},
number = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/}
}
TY - JOUR AU - A. Khellaf AU - S. Benarab AU - H. Guebbai AU - W. Merchela TI - A class of strongly stable approximation for unbounded operators JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 218 EP - 234 VL - 24 IS - 126 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/ LA - ru ID - VTAMU_2019_24_126_a7 ER -
%0 Journal Article %A A. Khellaf %A S. Benarab %A H. Guebbai %A W. Merchela %T A class of strongly stable approximation for unbounded operators %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 218-234 %V 24 %N 126 %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/ %G ru %F VTAMU_2019_24_126_a7
A. Khellaf; S. Benarab; H. Guebbai; W. Merchela. A class of strongly stable approximation for unbounded operators. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 218-234. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a7/
[1] M. Levitin, E. Shargorodsky, “Spectral pollution and second-order relative spectra for self-adjoint operators”, IMA J. Numer. Anal., 24:3 (2004), 393–416 | DOI | MR | Zbl
[2] E. B. Davies, “Spectral enclosures and complex resonances for general self-adjoint operators”, LMSJ. Comput. Math., 1:3 (1998), 42–-74 | DOI | MR | Zbl
[3] E. B. Davies, M. Plum, Spectral Pollution, 2002, arXiv: math/0302145v1 | MR
[4] S. Bögli, “Convergence of sequences of linear operators and their spectra”, Integral Equations Operator Theory, 88:3 (2017), 559–599 | DOI | MR | Zbl
[5] J. Hinchcliffe, M. Strauss, S. E. Zhukovskiy, “Spectral enclosure and superconvergence for eigenvalues in gaps”, Integral Equations Operator Theory, 84:1 (2016), 1–32 | DOI | MR | Zbl
[6] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii Journal of Mathematics, 34:3 (2013), 45–60 | DOI | MR | Zbl
[7] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, California, 2005 | MR | Zbl
[8] I. Gohberg, I. S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, v. I, Springer Basel AG, M., 1990 | MR
[9] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York., 2001 | MR | Zbl
[10] M. T. Nair, “On strongly stable approximation”, J. Austral. Math. Soc, 52:2 (1992), 251–260 | DOI | MR | Zbl
[11] A. Khellaf, H. Guebbai, S. Lemita, M. Z. Aissaoui, “Eigenvalues computation by the generalized spectrum method of Schrödinger's operator”, Computational and Applied Mathematics, 37:5 (2018), 5965–5980 | DOI | MR | Zbl
[12] G. F. Roach, Green's Functions, Cambridge University Press, New York., 1982 | MR | Zbl
[13] A. Aslanyan, E. B. Davies, “Spectral instability for some Schrödinger operators”, E. Numer. Math., 85:4 (2000), 525–552 | DOI | MR | Zbl
[14] H. Guebbai, A. Largillier, “Spectra and pseudospectra of convection-diffusion operator”, Lobachevskii Journal of Mathematics, 33:3 (2012), 274–283 | DOI | MR | Zbl