The harmonic balance method for finding approximate periodic solutions of the Lorenz system
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 187-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the harmonic balance method for finding approximate periodic solutions of the Lorenz system. When developing software that implements the described method, the math package Maxima was chosen. The drawbacks of symbolic calculations for obtaining a system of nonlinear algebraic equations with respect to the cyclic frequency, free terms and amplitudes of the harmonics, that make up the desired solution, are shown. To speed up the calculations, this system was obtained in a general form for the first time. The results of the computational experiment are given: the coefficients of trigonometric polynomials approximating the found periodic solution, the initial condition, and the cycle period. The results obtained were verified using a high-precision method of numerical integration based on the power series method and described earlier in the articles of the authors.
Keywords: Lorenz system, attractor, harmonic balance method, Fourier series.
@article{VTAMU_2019_24_126_a4,
     author = {A. N. Pchelintsev and A. A. Polunovskiy and I. Yu. Yukhanova},
     title = {The harmonic balance method for finding approximate periodic solutions of the {Lorenz} system},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {187--203},
     year = {2019},
     volume = {24},
     number = {126},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/}
}
TY  - JOUR
AU  - A. N. Pchelintsev
AU  - A. A. Polunovskiy
AU  - I. Yu. Yukhanova
TI  - The harmonic balance method for finding approximate periodic solutions of the Lorenz system
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 187
EP  - 203
VL  - 24
IS  - 126
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/
LA  - ru
ID  - VTAMU_2019_24_126_a4
ER  - 
%0 Journal Article
%A A. N. Pchelintsev
%A A. A. Polunovskiy
%A I. Yu. Yukhanova
%T The harmonic balance method for finding approximate periodic solutions of the Lorenz system
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 187-203
%V 24
%N 126
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/
%G ru
%F VTAMU_2019_24_126_a4
A. N. Pchelintsev; A. A. Polunovskiy; I. Yu. Yukhanova. The harmonic balance method for finding approximate periodic solutions of the Lorenz system. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 187-203. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/

[1] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Foundations of Computational Mathematics, 2:1 (2002), 53–117 | DOI | MR | Zbl

[3] J. Palis, Jr. W. de Melo, Geometric Theory of Dynamical Systems An Introduction, Springer–Verlag, New York, 1982 | MR | Zbl

[4] M. I. Rabinovich, “Stokhasticheskie avtokolebaniya i turbulentnost”, Uspekhi fizicheskikh nauk, 125 (1978), 123–168 | DOI | MR

[5] Z. Galias, W. Tucker, “Validated study of the existence of short cycles for chaotic systems using symbolic dynamics and interval tools”, International Journal of Bifurcation and Chaos, 21:2 (2011), 551–563 | DOI | MR | Zbl

[6] R. Lozi, Can we trust in numerical computations of chaotic solutions of dynamical systems?, Topology and Dynamics of Chaos, In Celebration of Robert Gilmore's 70th Birthday, World Scientific Series in Nonlinear Science Series A, 84, 2013, 63–98 | DOI | MR | Zbl

[7] D. Viswanath, “The fractal property of the Lorenz attractor”, Physica D: Nonlinear Phenomena, 190:1–2 (2004), 115–128 | DOI | MR | Zbl

[8] D. Viswanath, “The Lindstedt–Poincare technique as an algorithm for computing periodic orbits”, SIAM Review, 43:3 (2001), 478–495 | DOI | MR | Zbl

[9] A. N. Pchelintsev, “Chislennoe i fizicheskoe modelirovanie dinamiki sistemy Lorentsa”, Sibirskii zhurnal vychislitelnoi matematiki, 17:2 (2014), 191–201 | MR | Zbl

[10] K. Neymeyr, F. Seelig, “Determination of unstable limit cycles in chaotic systems by method of unrestricted harmonic balance”, Zeitschrift für Naturforschung A, 46:6 (1991), 499–502 | DOI | Zbl

[11] A. C. J. Luo, J. Huang, “Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance”, Journal of Vibration and Control, 18:11 (2011), 1661–1674 | DOI | MR

[12] A. C. J. Luo, Toward Analytical Chaos in Nonlinear Systems, John Wiley Sons, Chichester, 2014 | MR | Zbl

[13] A. C. J. Luo, S. Guo, “Analytical solutions of period-1 to period-2 motions in a periodically diffused brusselator”, Journal of Computational and Nonlinear Dynamics, 13:9 (2018), 090912 | DOI | MR

[14] G. P. Tolstov, Fourier Series, Dover Publications, New York, 1962 | MR