The harmonic balance method for finding approximate periodic solutions of the Lorenz system
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 187-203
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the harmonic balance method for finding approximate periodic solutions of the Lorenz system. When developing software that implements the described method, the math package Maxima was chosen. The drawbacks of symbolic calculations for obtaining a system of nonlinear algebraic equations with respect to the cyclic frequency, free terms and amplitudes of the harmonics, that make up the desired solution, are shown. To speed up the calculations, this system was obtained in a general form for the first time. The results of the computational experiment are given: the coefficients of trigonometric polynomials approximating the found periodic solution, the initial condition, and the cycle period. The results obtained were verified using a high-precision method of numerical integration based on the power series method and described earlier in the articles of the authors.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lorenz system, attractor, harmonic balance method, Fourier series.
                    
                  
                
                
                @article{VTAMU_2019_24_126_a4,
     author = {A. N. Pchelintsev and A. A. Polunovskiy and I. Yu. Yukhanova},
     title = {The harmonic balance method for finding approximate periodic solutions of the {Lorenz} system},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {24},
     number = {126},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/}
}
                      
                      
                    TY - JOUR AU - A. N. Pchelintsev AU - A. A. Polunovskiy AU - I. Yu. Yukhanova TI - The harmonic balance method for finding approximate periodic solutions of the Lorenz system JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 187 EP - 203 VL - 24 IS - 126 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/ LA - ru ID - VTAMU_2019_24_126_a4 ER -
%0 Journal Article %A A. N. Pchelintsev %A A. A. Polunovskiy %A I. Yu. Yukhanova %T The harmonic balance method for finding approximate periodic solutions of the Lorenz system %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 187-203 %V 24 %N 126 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/ %G ru %F VTAMU_2019_24_126_a4
A. N. Pchelintsev; A. A. Polunovskiy; I. Yu. Yukhanova. The harmonic balance method for finding approximate periodic solutions of the Lorenz system. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 187-203. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/
