@article{VTAMU_2019_24_126_a4,
author = {A. N. Pchelintsev and A. A. Polunovskiy and I. Yu. Yukhanova},
title = {The harmonic balance method for finding approximate periodic solutions of the {Lorenz} system},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {187--203},
year = {2019},
volume = {24},
number = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/}
}
TY - JOUR AU - A. N. Pchelintsev AU - A. A. Polunovskiy AU - I. Yu. Yukhanova TI - The harmonic balance method for finding approximate periodic solutions of the Lorenz system JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 187 EP - 203 VL - 24 IS - 126 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/ LA - ru ID - VTAMU_2019_24_126_a4 ER -
%0 Journal Article %A A. N. Pchelintsev %A A. A. Polunovskiy %A I. Yu. Yukhanova %T The harmonic balance method for finding approximate periodic solutions of the Lorenz system %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 187-203 %V 24 %N 126 %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/ %G ru %F VTAMU_2019_24_126_a4
A. N. Pchelintsev; A. A. Polunovskiy; I. Yu. Yukhanova. The harmonic balance method for finding approximate periodic solutions of the Lorenz system. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 187-203. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a4/
[1] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Foundations of Computational Mathematics, 2:1 (2002), 53–117 | DOI | MR | Zbl
[3] J. Palis, Jr. W. de Melo, Geometric Theory of Dynamical Systems An Introduction, Springer–Verlag, New York, 1982 | MR | Zbl
[4] M. I. Rabinovich, “Stokhasticheskie avtokolebaniya i turbulentnost”, Uspekhi fizicheskikh nauk, 125 (1978), 123–168 | DOI | MR
[5] Z. Galias, W. Tucker, “Validated study of the existence of short cycles for chaotic systems using symbolic dynamics and interval tools”, International Journal of Bifurcation and Chaos, 21:2 (2011), 551–563 | DOI | MR | Zbl
[6] R. Lozi, Can we trust in numerical computations of chaotic solutions of dynamical systems?, Topology and Dynamics of Chaos, In Celebration of Robert Gilmore's 70th Birthday, World Scientific Series in Nonlinear Science Series A, 84, 2013, 63–98 | DOI | MR | Zbl
[7] D. Viswanath, “The fractal property of the Lorenz attractor”, Physica D: Nonlinear Phenomena, 190:1–2 (2004), 115–128 | DOI | MR | Zbl
[8] D. Viswanath, “The Lindstedt–Poincare technique as an algorithm for computing periodic orbits”, SIAM Review, 43:3 (2001), 478–495 | DOI | MR | Zbl
[9] A. N. Pchelintsev, “Chislennoe i fizicheskoe modelirovanie dinamiki sistemy Lorentsa”, Sibirskii zhurnal vychislitelnoi matematiki, 17:2 (2014), 191–201 | MR | Zbl
[10] K. Neymeyr, F. Seelig, “Determination of unstable limit cycles in chaotic systems by method of unrestricted harmonic balance”, Zeitschrift für Naturforschung A, 46:6 (1991), 499–502 | DOI | Zbl
[11] A. C. J. Luo, J. Huang, “Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance”, Journal of Vibration and Control, 18:11 (2011), 1661–1674 | DOI | MR
[12] A. C. J. Luo, Toward Analytical Chaos in Nonlinear Systems, John Wiley Sons, Chichester, 2014 | MR | Zbl
[13] A. C. J. Luo, S. Guo, “Analytical solutions of period-1 to period-2 motions in a periodically diffused brusselator”, Journal of Computational and Nonlinear Dynamics, 13:9 (2018), 090912 | DOI | MR
[14] G. P. Tolstov, Fourier Series, Dover Publications, New York, 1962 | MR