Integer triangles, Pell's equation and Chebyshev polynomials
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 179-186
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider some types of integer triangles: “almost equilateral”, rectangular “almost isosceles”, rectangular "whose angle is almost $30^\circ$". The description is reduced to Pell's equation. We state the theory of Pell's equation on the basis of an “iterated matrix”. Powers of this matrix are expressed in terms of Chebyshev polynomials.
Keywords:
integer triangles, Chebyshev polynomials.
Mots-clés : Heron’s formula, Pell’s equation
Mots-clés : Heron’s formula, Pell’s equation
@article{VTAMU_2019_24_126_a3,
author = {V. F. Molchanov and E. S. Yuryeva},
title = {Integer triangles, {Pell's} equation and {Chebyshev} polynomials},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {179--186},
year = {2019},
volume = {24},
number = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a3/}
}
TY - JOUR AU - V. F. Molchanov AU - E. S. Yuryeva TI - Integer triangles, Pell's equation and Chebyshev polynomials JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 179 EP - 186 VL - 24 IS - 126 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a3/ LA - ru ID - VTAMU_2019_24_126_a3 ER -
V. F. Molchanov; E. S. Yuryeva. Integer triangles, Pell's equation and Chebyshev polynomials. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 179-186. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a3/
[1] I. V. Arnold, Number Theory, Uchpedgiz, Moscow, 1939 (In Russian)
[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, v. 2, Bateman Manuscript Project, McGraw-Hill, New York, 1953 | MR
[3] N. Ya. Vlenkin, Combinatorial Analysis, Nauka, Moscow, 1969 (In Russian) | MR
[4] A. O. Gelfond, Calculus of Finite Differences, Gostekhizdat, M–L., 1952 (In Russian) | MR
[5] A. Yu. Evnin, “Pell's equations”, Mathematics in Higher Education, 7 (2013), 89–94 (In Russian)