@article{VTAMU_2019_24_126_a1,
author = {N. G. Zhurbenko and A. F. Izmailov and E. I. Uskov},
title = {Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {150--165},
year = {2019},
volume = {24},
number = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a1/}
}
TY - JOUR AU - N. G. Zhurbenko AU - A. F. Izmailov AU - E. I. Uskov TI - Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 150 EP - 165 VL - 24 IS - 126 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a1/ LA - ru ID - VTAMU_2019_24_126_a1 ER -
%0 Journal Article %A N. G. Zhurbenko %A A. F. Izmailov %A E. I. Uskov %T Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 150-165 %V 24 %N 126 %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a1/ %G ru %F VTAMU_2019_24_126_a1
N. G. Zhurbenko; A. F. Izmailov; E. I. Uskov. Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 150-165. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a1/
[1] A. F. Izmailov, M. V. Solodov, Newton-Type Methods for Optimization and Variational Problems, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2014 | DOI | MR
[2] A. F. Izmailov, M. V. Solodov, Numerical Methods of Optimization, Second ed., Fizmatlit, Moscow, 2008 (In Russian) | MR
[3] S. J. Wright, “Superlinear convergence of a stabilized SQP method to a degenerate solution”, Comput. Optim. Appl., 11 (1998), 253–275 | DOI | MR | Zbl
[4] A. F. Izmailov, M. V. Solodov, “Stabilized SQP revisited”, Math. Program., 133 (2012), 93–120 | DOI | MR | Zbl
[5] A. F. Izmailov, A. M. Krylova, E. I. Uskov, “Hybrid globalization of stabilized sequential quadratic programming method”, Theoretical and applied problems of nonlinear analysis, Computing Center RAS, Moscow, 2011, 47–66 (In Russian)
[6] P. E. Gill, D. P. Robinson, “A primal-dual augmented Lagrangian”, Comput. Optim. Appl., 51 (2012), 1–25 | DOI | MR | Zbl
[7] P. E. Gill, D. P. Robinson, “A globally convergent stabilized SQP method”, SIAM J. Optim. Appl., 23 (2013), 1983–2010 | DOI | MR | Zbl
[8] D. Fernandez, E. A. Pilotta, G. A. Torres, “An inexact restoration strategy for the globalization of the sSQP method”, Comput. Optim. Appl., 54 (2013), 595–617 | DOI | MR | Zbl
[9] A. F. Izmailov, M. V. Solodov, E. I. Uskov, “Combining stabilized SQP with the augmented Lagrangian algorithm”, Comput. Optim. Appl., 62 (2015), 33–73 | DOI | MR
[10] A. F. Izmailov, M. V. Solodov, E. I. Uskov, “Globalizing stabilized sequential quadratic programming method by smooth primal-dual exact penalty function”, J. Optim. Theory. Appl., 69 (2016), 148–178 | DOI | MR
[11] P. E. Gill, V. Kungurtsev, D. P. Robinson, “A stabilized SQP method: global convergence”, IMA Journal of Numerical Analysis, 37 (2017), 407–443 | DOI | MR | Zbl
[12] P. E. Gill, V. Kungurtsev, D. P. Robinson, “A stabilized SQP method: superlinear convergence”, Math. Program., 163 (2017), 369–410 | DOI | MR | Zbl
[13] A. F. Izmailov, E. I. Uskov, “Subspace-stabilized sequential quadratic programming”, Comput. Optim. Appl., 67 (2017), 129–154 | DOI | MR | Zbl
[14] E. M. E. Mostafa, L. N. Vicente, S. J. Wright, “Numerical behavior of a stabilized SQP method for degenerate NLP problems”, Global Optimization and Constraint Satisfaction., Lecture Notes in Computer Science 2861., Springer, Berlin, 2003, 123–141 | DOI | Zbl
[15] A. F. Izmailov, M. V. Solodov, “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optim., 15 (2004), 210–228 | DOI | MR | Zbl
[16] J. Nocedal, S. J. Wright, Numerical Optimization, Second ed., Springer, New York, 2006 | MR | Zbl
[17] A. F. Izmailov, M. V. Solodov, “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117 (2009), 271–304 | DOI | MR | Zbl
[18] E. D. Dolan, J. J. More, “Benchmarking optimization software with performance profiles”, Math. Program., 91 (2002), 201–213 | DOI | MR | Zbl