Existence of inverse function in a neighbourhood of a critical value
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical inverse function theorems guarantee the existence of an inverse function in a neighborhood of the value of a given point if the regularity condition is satisfied at this point, that is, the first derivative at a given point is nondegenerate. A more general condition for the existence of an implicit function is the 2-regularity condition. It holds, for example, for many quadratic mappings at zero. It is known that under natural smoothness assumptions, the existence of a continuous inverse function follows from a 2-regularity of a map at a point in a certain direction. In this paper, it is shown that, in the known statements guaranteeing the existence of an inverse function when the 2-regularity condition is satisfied, we can weaken the smoothness assumptions. However, the inverse function may not be continuous.
Keywords: inverse function, 2 -regularity.
@article{VTAMU_2019_24_126_a0,
     author = {S. E. Zhukovskiy and T. T. Ngok},
     title = {Existence of inverse function in a neighbourhood of a critical value},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {141--149},
     year = {2019},
     volume = {24},
     number = {126},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/}
}
TY  - JOUR
AU  - S. E. Zhukovskiy
AU  - T. T. Ngok
TI  - Existence of inverse function in a neighbourhood of a critical value
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 141
EP  - 149
VL  - 24
IS  - 126
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/
LA  - ru
ID  - VTAMU_2019_24_126_a0
ER  - 
%0 Journal Article
%A S. E. Zhukovskiy
%A T. T. Ngok
%T Existence of inverse function in a neighbourhood of a critical value
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 141-149
%V 24
%N 126
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/
%G ru
%F VTAMU_2019_24_126_a0
S. E. Zhukovskiy; T. T. Ngok. Existence of inverse function in a neighbourhood of a critical value. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 141-149. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/

[1] V. M. Tikhomirov, “Lyusternik's Theorem on tangent space and its modifications”, Optimal Control: Mathematical Issues of Production Control, 7, MSU Publ., Moscow, 1977, 22–30 (In Russian)

[2] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings. A View from Variational Analysis, Springer, New York, 2009 | MR | Zbl

[3] M. Spivak, Calculus on Manifolds, Addison-Wesley, New York, 1965 | MR

[4] H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data”, SIAM J. Control, 12:2 (1974), 229–236 | DOI | MR | Zbl

[5] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Pontryagin's Maximum Principle. Proof and Applications, Factorial Press, Moscow, 2006 (In Russian)

[6] E. R. Avakov, A. V. Arutyunov, “Teorema ob obratnoi funktsii i usloviya ekstremuma dlya anormalnykh zadach s nezamknutym obrazom”, Matem. sb., 196:9 (2005), 3–22 | MR | Zbl

[7] A. V. Arutyunov, “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 205–215 | MR | Zbl

[8] A. V. Arutyunov, “Gladkie anormalnye zadachi teorii ekstremuma i analiza”, UMN, 67:3(405) (2012), 3–62 | MR | Zbl