@article{VTAMU_2019_24_126_a0,
author = {S. E. Zhukovskiy and T. T. Ngok},
title = {Existence of inverse function in a neighbourhood of a critical value},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {141--149},
year = {2019},
volume = {24},
number = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/}
}
TY - JOUR AU - S. E. Zhukovskiy AU - T. T. Ngok TI - Existence of inverse function in a neighbourhood of a critical value JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 141 EP - 149 VL - 24 IS - 126 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/ LA - ru ID - VTAMU_2019_24_126_a0 ER -
S. E. Zhukovskiy; T. T. Ngok. Existence of inverse function in a neighbourhood of a critical value. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 126, pp. 141-149. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_126_a0/
[1] V. M. Tikhomirov, “Lyusternik's Theorem on tangent space and its modifications”, Optimal Control: Mathematical Issues of Production Control, 7, MSU Publ., Moscow, 1977, 22–30 (In Russian)
[2] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings. A View from Variational Analysis, Springer, New York, 2009 | MR | Zbl
[3] M. Spivak, Calculus on Manifolds, Addison-Wesley, New York, 1965 | MR
[4] H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data”, SIAM J. Control, 12:2 (1974), 229–236 | DOI | MR | Zbl
[5] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Pontryagin's Maximum Principle. Proof and Applications, Factorial Press, Moscow, 2006 (In Russian)
[6] E. R. Avakov, A. V. Arutyunov, “Teorema ob obratnoi funktsii i usloviya ekstremuma dlya anormalnykh zadach s nezamknutym obrazom”, Matem. sb., 196:9 (2005), 3–22 | MR | Zbl
[7] A. V. Arutyunov, “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 205–215 | MR | Zbl
[8] A. V. Arutyunov, “Gladkie anormalnye zadachi teorii ekstremuma i analiza”, UMN, 67:3(405) (2012), 3–62 | MR | Zbl