On random equilibrium points
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 112-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a random version of a theorem on equilibrium points for two parametrized multivalued maps satisfying a joint Caristi type condition.
Keywords: random equilibrium point; random fixed point; Caristi's theorem; random multivalued map; measurable multivalued map; Carathéodory multivalued map.
@article{VTAMU_2019_24_125_a9,
     author = {V. V. Obukhovskii and E. N. Getmanova and M. G. Karpov},
     title = {On random equilibrium points},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {112--118},
     year = {2019},
     volume = {24},
     number = {125},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a9/}
}
TY  - JOUR
AU  - V. V. Obukhovskii
AU  - E. N. Getmanova
AU  - M. G. Karpov
TI  - On random equilibrium points
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 112
EP  - 118
VL  - 24
IS  - 125
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a9/
LA  - ru
ID  - VTAMU_2019_24_125_a9
ER  - 
%0 Journal Article
%A V. V. Obukhovskii
%A E. N. Getmanova
%A M. G. Karpov
%T On random equilibrium points
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 112-118
%V 24
%N 125
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a9/
%G ru
%F VTAMU_2019_24_125_a9
V. V. Obukhovskii; E. N. Getmanova; M. G. Karpov. On random equilibrium points. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 112-118. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a9/

[1] J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[2] Zh.-P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988; J.-P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis, Springer-Verlag, Berlin, 1993 | MR | Zbl

[3] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. 1, Theory, Kluwer, Dordrecht, 1997 | MR | Zbl

[4] N. Mizoguchi, W. Takahashi, “Fixed point theorems for multivalued mappings on complete metric spaces”, J. Math. Anal. Appl., 141 (1989), 177–188 | DOI | MR | Zbl

[5] A. Petrusel, G. Mot, Multivalued Analysis and Mathematical Economics, House of the Book of Science, Cluj-Napoca, 2004 | MR | Zbl

[6] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, Librokom, Moscow, 2011 (In Russian) | MR

[7] L. Górniewicz, Topological Fixed Point Theory and Its Applications, V. 4, Topological Fixed Point Theory of Multivalued Mappings, 2-nd ed., Springer, Dordrecht, 2006 | MR