Construction of a fundamental solution for a one degenerating elliptic equation with a Bessel operator
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 47-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Degenerating elliptic equations containing the Bessel operator are mathematical models of axial and multi-axial symmetry of a wide variety of processes and phenomena of the surrounding world. Difficulties in the study of such equations are associated, inter alia, with the presence of singularities in the coefficients. This article considers a $p$-dimensional, $p\geqslant3,$ degenerating elliptic equation with a negative parameter, in which the Bessel operator acts on one of the variables. A fundamental solution of this equation is constructed and its properties are investigated, in particular, the behavior at infinity and at points of the coordinate planes $x_{p-1}=0,$ $x_p=0.$ The results obtained will find application in the construction of solutions of boundary value problems, since on the basis of a fundamental solution, it is possible to choose the potential with which the singular problem is reduced to a regular system of integral equations.
Keywords: degenerating elliptic equation with a Bessel operator; degenerating B-elliptic equation; fundamental solution.
@article{VTAMU_2019_24_125_a4,
     author = {N. A. Ibragimova},
     title = {Construction of a fundamental solution for a one degenerating elliptic equation with a {Bessel} operator},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {47--59},
     year = {2019},
     volume = {24},
     number = {125},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a4/}
}
TY  - JOUR
AU  - N. A. Ibragimova
TI  - Construction of a fundamental solution for a one degenerating elliptic equation with a Bessel operator
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 47
EP  - 59
VL  - 24
IS  - 125
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a4/
LA  - ru
ID  - VTAMU_2019_24_125_a4
ER  - 
%0 Journal Article
%A N. A. Ibragimova
%T Construction of a fundamental solution for a one degenerating elliptic equation with a Bessel operator
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 47-59
%V 24
%N 125
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a4/
%G ru
%F VTAMU_2019_24_125_a4
N. A. Ibragimova. Construction of a fundamental solution for a one degenerating elliptic equation with a Bessel operator. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 47-59. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a4/

[1] I. A. Kipriyanov, V. I. Kononenko, “Fundamental solutions of $B$-elliptic equations”, Differ. Equ., 3:1 (1967), 114–129 (In Russian) | MR | Zbl

[2] V. V. Katrakhov, “Obschie kraevye zadachi dlya odnogo klassa singulyarnykh i vyrozhdayuschikhsya ellipticheskikh uravnenii”, Matematicheskii sbornik, 112:3 (1980), 354–379 ; V. V. Katrakhov, “General boundary value problems for a class of singular and degenerate elliptic equations”, Math. USSR-Sb., 40:3 (1981), 325–347 | MR | Zbl | DOI | MR | Zbl

[3] A. Yu. Sazonov, L. N. Surkova, “On the uniqueness of the classical solution of the Dirichlet problem for a $B$-elliptic equation with constant coefficients”, Tambov University Reports. Series: Natural and Technical Sciences, 12:4 (2007), 523-524 (In Russian)

[4] L. N. Lyakhov, “Fundamentalnye resheniya singulyarnykh differentsialnykh uravnenii s $D_B$-operatorom Besselya”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 278, MAIK «Nauka/Interperiodika», M., 2012, 148–160

[5] L. N. Lyakhov, A. V. Ryzhkov, “O resheniyakh $B$-poligarmonicheskogo uravneniya”, Differentsialnye uravneniya, 36:10 (2000), 1365–1368 | MR | Zbl

[6] F. G. Mukhlisov, “O suschestvovanii i edinstvennosti resheniya nekotorykh uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, Izv. vuzov. Matem., 1984, no. 11, 63–66 | MR | Zbl

[7] A. Sh. Khismatullin, “Reshenie kraevykh zadach dlya odnogo vyrozhdayuschegosya $B$-ellipticheskogo uravneniya 2-go roda metodom potentsialov”, Izv. vuzov. Matem., 2007, no. 1, 63–75 | MR | Zbl

[8] E. V. Chebatoreva, “The study of boundary value problems for a singular $B$-elliptic equation by the method of potentials”, Russian Math. (Iz. VUZ), 2010, no. 5, 88–90 (In Russian) | MR

[9] I. B. Garipov, R. M. Mavlyaviev, “Fundamental solution of a multidimensional axisymmetric equation”, Complex Variables and Elliptic Equations, 63:9 (2018), 1290–1305 | DOI | MR | Zbl

[10] G. N. Watson, Theory of Bessel Functions, v. 1, Foreign Literature Publ., Moscow, 1949 (In Russian)

[11] B. M. Levitan, “Expansion in Fourier series and integrals with Bessel functions”, Russian Mathematical Surveys, 6:2(42) (1951), 102–143 (In Russian) | MR | Zbl

[12] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, The Science Publishing House, Moscow, 1971 (In Russian) | MR