The set of regularity of a multivalued mapping in a space with a vector-valued metric
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 39-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider multivalued mappings acting in spaces with a vector-valued metric. A vector-valued metric is understood as a mapping satisfying the axioms “of an ordinary metric” with values in the cone of a linear normed space. The concept of the regularity set of a multivalued mapping is defined. A set of regularity is used in the study of inclusions in spaces with a vector-valued metric.
Keywords: multi-valued mapping; space with vector-valued metric; metric regularity; Lipschitz mapping; inclusion.
@article{VTAMU_2019_24_125_a3,
     author = {T. V. Zhukovskaya and E. A. Pluzhnikova},
     title = {The set of regularity of a multivalued mapping
 in a space with a vector-valued metric},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {39--46},
     year = {2019},
     volume = {24},
     number = {125},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a3/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - E. A. Pluzhnikova
TI  - The set of regularity of a multivalued mapping
 in a space with a vector-valued metric
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 39
EP  - 46
VL  - 24
IS  - 125
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a3/
LA  - ru
ID  - VTAMU_2019_24_125_a3
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A E. A. Pluzhnikova
%T The set of regularity of a multivalued mapping
 in a space with a vector-valued metric
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 39-46
%V 24
%N 125
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a3/
%G ru
%F VTAMU_2019_24_125_a3
T. V. Zhukovskaya; E. A. Pluzhnikova. The set of regularity of a multivalued mapping
 in a space with a vector-valued metric. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 39-46. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a3/

[1] E. S. Zhukovskii, E. A. Pluzhnikova, “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 49:4 (2013), 439—455 | Zbl

[2] E. S. Zhukovskii, E. A. Pluzhnikova, “Ob upravlenii ob'ektami, dvizhenie kotorykh opisyvaetsya neyavnymi nelineinymi differentsialnymi uravneniyami”, Avtomat. i telemekh., 2015, no. 1, 31–56 | Zbl

[3] V. S. Treshchev, “Well-posed solvability of systems of operator equations with vector covering mappings”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1487–1489 (In Russian)

[4] E. S. Zhukovskii, “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. matem. zhurn., 57:2 (2016), 297–311 | MR | Zbl

[5] E. S. Zhukovskii, “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matem., 2016, no. 10, 14–28

[6] E. S. Zhukovskii, “O tochkakh sovpadeniya mnogoznachnykh vektornykh otobrazhenii metricheskikh prostranstv”, Matem. zametki, 100:3 (2016), 344–362 | MR

[7] M. V. Borzova, T. V. Zhukovskaia, E. S. Zhukovskiy, “On covering of set-valued mappings in cartesian products of metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 21:2 (2016), 363–370 (In Russian)

[8] E. S. Zhukovskiy, “On perturbations of covering mappings in spaces with vector-valued metrics”, Tambov University Reports. Series: Natural and Technical Sciences, 21:2 (2016), 375–379 (In Russian)

[9] A. V. Arutyunov, S. E. Zhukovskii, “Tochki sovpadeniya otobrazhenii v prostranstvakh s vektornoi metrikoi i ikh prilozheniya k differentsialnym uravneniyam i upravlyaemym sistemam”, Differents. uravneniya, 53:11 (2017), 1473–1481 | Zbl

[10] E. A. Pluzhnikova, T. V. Zhukovskaia, Yu. A. Moiseev, “On sets of metric regularity of mappings in spaces with vector-valued metric”, Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018), 547–554 (In Russian)

[11] E. S. Zhukovskiy, E. A. Pluzhnikova, “Multi-valued covering maps spaces with vector-valued metrics in research of functional inclusions”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 1974—1982 (In Russian)

[12] E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS, 24, no. 1, 2018, 93–105 (In Russian)

[13] Functional Analysis, SMB, ed. S. G. Krein, Nauka, Moscow, 1972 (In Russian) | MR