On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38
Cet article a éte moissonné depuis la source Math-Net.Ru
For arbitrary $(q_1,q_2)$-quasimetric space, it is proved that there exists a function $f,$ such that $f$-triangle inequality is more exact than any $(q_1,q_2)$-triangle inequality. It is shown that this function $f$ is the least one in the set of all concave continuous functions $g$ for which $g$-triangle inequality hold.
Mots-clés :
$(q_1,q_2)$-quasimetric space.
@article{VTAMU_2019_24_125_a2,
author = {Z. T. Zhukovskaya and S. E. Zhukovskiy and R. Sengupta},
title = {On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {33--38},
year = {2019},
volume = {24},
number = {125},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/}
}
TY - JOUR AU - Z. T. Zhukovskaya AU - S. E. Zhukovskiy AU - R. Sengupta TI - On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 33 EP - 38 VL - 24 IS - 125 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/ LA - ru ID - VTAMU_2019_24_125_a2 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A S. E. Zhukovskiy %A R. Sengupta %T On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 33-38 %V 24 %N 125 %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/ %G ru %F VTAMU_2019_24_125_a2
Z. T. Zhukovskaya; S. E. Zhukovskiy; R. Sengupta. On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/
[1] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, DAN, 469:5 (2016), 527–531 | Zbl
[2] A. V. Arutyunov, Lectures on Convex and Set-Valued Analysis, Fizmatlit, Moscow, 2014 (In Russian)