On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary $(q_1,q_2)$-quasimetric space, it is proved that there exists a function $f,$ such that $f$-triangle inequality is more exact than any $(q_1,q_2)$-triangle inequality. It is shown that this function $f$ is the least one in the set of all concave continuous functions $g$ for which $g$-triangle inequality hold.
Mots-clés : $(q_1,q_2)$-quasimetric space.
@article{VTAMU_2019_24_125_a2,
     author = {Z. T. Zhukovskaya and S. E. Zhukovskiy and R. Sengupta},
     title = {On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {24},
     number = {125},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/}
}
TY  - JOUR
AU  - Z. T. Zhukovskaya
AU  - S. E. Zhukovskiy
AU  - R. Sengupta
TI  - On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 33
EP  - 38
VL  - 24
IS  - 125
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/
LA  - ru
ID  - VTAMU_2019_24_125_a2
ER  - 
%0 Journal Article
%A Z. T. Zhukovskaya
%A S. E. Zhukovskiy
%A R. Sengupta
%T On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 33-38
%V 24
%N 125
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/
%G ru
%F VTAMU_2019_24_125_a2
Z. T. Zhukovskaya; S. E. Zhukovskiy; R. Sengupta. On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/