On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38
Voir la notice de l'article provenant de la source Math-Net.Ru
For arbitrary $(q_1,q_2)$-quasimetric space, it is proved that
there exists a function $f,$ such that $f$-triangle inequality
is more exact than any $(q_1,q_2)$-triangle inequality.
It is shown that this function $f$ is the least one
in the set of all concave continuous functions $g$
for which $g$-triangle inequality hold.
Mots-clés :
$(q_1,q_2)$-quasimetric space.
@article{VTAMU_2019_24_125_a2,
author = {Z. T. Zhukovskaya and S. E. Zhukovskiy and R. Sengupta},
title = {On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {33--38},
publisher = {mathdoc},
volume = {24},
number = {125},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/}
}
TY - JOUR AU - Z. T. Zhukovskaya AU - S. E. Zhukovskiy AU - R. Sengupta TI - On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 33 EP - 38 VL - 24 IS - 125 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/ LA - ru ID - VTAMU_2019_24_125_a2 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A S. E. Zhukovskiy %A R. Sengupta %T On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 33-38 %V 24 %N 125 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/ %G ru %F VTAMU_2019_24_125_a2
Z. T. Zhukovskaya; S. E. Zhukovskiy; R. Sengupta. On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 33-38. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a2/