Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 119-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the problem of optimal control with a convex integral quality index depends on slow variables for a linear steady-state control system with a fast and slow variables in the class of piecewise continuous controls with a smooth control constraints $$ \begin{cases} \dot{x}_{\varepsilon} = A_{11}x_{\varepsilon}+A_{12}y_{\varepsilon}+B_{1}u, & t\in[0,T], \qquad \|u\|\leqslant 1,\\ \varepsilon\dot{y}_{\varepsilon} = A_{21}x_{\varepsilon}+A_{22}y_{\varepsilon}+B_{2}u, & x_{\varepsilon}(0)=x^{0}, \quad y_{\varepsilon}(0)=y^{0},\\ J_\varepsilon(u):= \varphi(f(x_{\varepsilon}(T)) + \int_0^T \|u(t)\|^2\,dt\rightarrow \min, \end{cases} $$ where $x_\varepsilon\in\mathbb{R}^{n}$, $y_\varepsilon\in\mathbb{R}^{m}$, $ u\in\mathbb{R}^{r}$; $A_{ij}$, $B_{i}$, $i,j=1,2$ — are constant matrices of the corresponding dimension, and $\varphi(\cdot)$ – is the strictly convex and cofinite function that is continuously differentiable in $\mathbb{R}^{n}$ in the sense of convex analysis. In the general case, Pontryagin's maximum principle is a necessary and sufficient optimum condition for the optimization of a such a problem. The initial vector of the conjugate state $l_\varepsilon$ is the unique vector, thus determining the optimal control. It is proven that in the case of a finite number of control switching points, the asymptotics of the vector $l_\varepsilon$ has the character of a power series.
Keywords: optimal control, singular perturbation problems, asymptotic expansions, small parameter.
@article{VTAMU_2019_24_125_a10,
     author = {A. A. Shaburov},
     title = {Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {119--136},
     year = {2019},
     volume = {24},
     number = {125},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a10/}
}
TY  - JOUR
AU  - A. A. Shaburov
TI  - Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 119
EP  - 136
VL  - 24
IS  - 125
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a10/
LA  - ru
ID  - VTAMU_2019_24_125_a10
ER  - 
%0 Journal Article
%A A. A. Shaburov
%T Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 119-136
%V 24
%N 125
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a10/
%G ru
%F VTAMU_2019_24_125_a10
A. A. Shaburov. Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 119-136. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a10/

[1] A. B. Vasileva, M. G. Dmitriev, “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20 (1982), 3–77, VINITI, M. ; A. B. Vasil'eva, M. G. Dmitriev, “Singular perturbations in optimal control problems”, J. Soviet Math., 34:3 (1986), 1579–1629 | MR | DOI | Zbl

[2] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley and Sons, Inc., New York, London, Sydney, 1967 (In Russian)

[3] A. Donchev, Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987

[4] P. V. Kokotovic, A. H. Haddad, “Controllability and time-optimal control of systems with slow and fast models”, IEEE Trans. Automat. Control., 20:1 (1975), 111–113 | DOI | MR | Zbl

[5] A. R. Danilin, O. O. Kovrizhnykh, “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612-614 | Zbl

[6] A. R. Danilin, Yu. V. Parysheva, “Asimptotika optimalnogo znacheniya funktsionala kachestva v lineinoi zadache optimalnogo upravleniya v regulyarnom sluchae”, Tr. IMM UrO RAN, 13, no. 2, 2007, 55–65

[7] A. I. Kalinin, K. V. Semënov, “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 432–443 | MR | Zbl

[8] A. A. Shaburov, “Asymptotic expansion of a solution of a singularly perturbed optimal control problem in the space $\mathbb{R}^n$ with an integral convex performance index”, Proc. Steklov Inst. Math. (Suppl.), 23, no. 2, 2017, 303–310 (In Russian) | MR

[9] A. A. Shaburov, “Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only”, Proc. Steklov Inst. Math. (Suppl.), 24, no. 2, 2018, 280–289 (In Russian) | MR

[10] N. N. Krasovskii, Theory of Motion Control. Linear Systems, Nauka, Moscow, 1968 (In Russian)

[11] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 ; L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers, John Wiley and Sons, Inc., New York, London, Sydney, 1962 | MR | MR | Zbl

[12] A. M. Ilin, A. R. Danilin, Asymptotic Methods in Analysis, Fizmatlit, Moscow, 2009 (In Russian)

[13] S. K. Godunov, Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997; S. K. Godynov, Modern Aspects of Linear Algebra, RIMIBE NSU, Novosibirsk, 1998

[14] A. B. Vasilieva, V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moskow, 1973 (In Russian)

[15] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973; R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl