On the existence of fixed points in completely continuous operators in $F$-space
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is dedicated to the development of the theory of fixed points of completely continuous operators. We prove existence of new theorems of fixed points of completely continuous operators in $F$-space (Frechet space). This class of spaces except Banach includes such important space as a countably normed space and $L_p(0$ $l_p(0$
Keywords: banach space; $F$-space; completely continuous operator; fixed point.
@article{VTAMU_2019_24_125_a1,
     author = {A. N. Dorokhov and M. G. Karpov},
     title = {On the existence of fixed points in completely continuous operators in $F$-space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {24},
     number = {125},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/}
}
TY  - JOUR
AU  - A. N. Dorokhov
AU  - M. G. Karpov
TI  - On the existence of fixed points in completely continuous operators in $F$-space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 26
EP  - 32
VL  - 24
IS  - 125
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/
LA  - ru
ID  - VTAMU_2019_24_125_a1
ER  - 
%0 Journal Article
%A A. N. Dorokhov
%A M. G. Karpov
%T On the existence of fixed points in completely continuous operators in $F$-space
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 26-32
%V 24
%N 125
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/
%G ru
%F VTAMU_2019_24_125_a1
A. N. Dorokhov; M. G. Karpov. On the existence of fixed points in completely continuous operators in $F$-space. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 26-32. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/