On the existence of fixed points in completely continuous operators in $F$-space
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 26-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is dedicated to the development of the theory of fixed points of completely continuous operators. We prove existence of new theorems of fixed points of completely continuous operators in $F$-space (Frechet space). This class of spaces except Banach includes such important space as a countably normed space and $L_p(0 $l_p(0
Keywords: banach space; $F$-space; completely continuous operator; fixed point.
@article{VTAMU_2019_24_125_a1,
     author = {A. N. Dorokhov and M. G. Karpov},
     title = {On the existence of fixed points in completely continuous operators in $F$-space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {26--32},
     year = {2019},
     volume = {24},
     number = {125},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/}
}
TY  - JOUR
AU  - A. N. Dorokhov
AU  - M. G. Karpov
TI  - On the existence of fixed points in completely continuous operators in $F$-space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2019
SP  - 26
EP  - 32
VL  - 24
IS  - 125
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/
LA  - ru
ID  - VTAMU_2019_24_125_a1
ER  - 
%0 Journal Article
%A A. N. Dorokhov
%A M. G. Karpov
%T On the existence of fixed points in completely continuous operators in $F$-space
%J Vestnik rossijskih universitetov. Matematika
%D 2019
%P 26-32
%V 24
%N 125
%U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/
%G ru
%F VTAMU_2019_24_125_a1
A. N. Dorokhov; M. G. Karpov. On the existence of fixed points in completely continuous operators in $F$-space. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 125, pp. 26-32. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_125_a1/

[1] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Fizmatgiz, Moscow, 1962 (In Russian)

[2] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, Moscow, 1956 (In Russian)

[3] I. A. Bakhtin, Positive Solutions of Nonlinear Equations with Concave Operators, a manual for special course, Voronezh State Pedagogical Institute, Voronezh, 1985 (In Russian)

[4] I. A. Bakhtin, Nonlinear Equations with Monotone Operators, a manual for special course, Voronezh State Pedagogical Institute, Voronezh, 1988 (In Russian)

[5] A. N. Dorokhov, “Nepodvizhnye tochki vpolne nepreryvnykh operatorov v $F$-prostranstve”, Izvestiya VGPU, 257 (2011), 8–15

[6] A. N. Dorokhov, “The fixed points of completely continuous operators in $F$-space”, News of the Voronezh State Pedagogical University, 257 (2011), 8–15 (In Russian)

[7] K. Yoshida, Functional Analysis, World, Moscow, 1967 (In Russian)

[8] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Science, Moscow, 1977 (In Russian)