Declusterzation of neighborhood structures
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 648-654
Neighborhood structures (digraphs of a special kind) can have vertex or relational sets of equipping variables. Vertex variables correspond to the vertices of the structure, while the relational ones correspond to the arcs. The article describes an algorithm for the canonical transformation (declusterization) of the relational structures into the vertex ones. This transformation establishes a connection between two types of control metasystems on neighborhood structures.
Keywords:
neighborhood structure, vertex equipment, relational equipment, declusterization.
@article{VTAMU_2018_23_124_a7,
author = {N. M. Mishachev and A. M. Shmyrin},
title = {Declusterzation of neighborhood structures},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {648--654},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/}
}
N. M. Mishachev; A. M. Shmyrin. Declusterzation of neighborhood structures. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 648-654. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/