Declusterzation of neighborhood structures
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 648-654
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Neighborhood structures (digraphs of a special kind) can have vertex or relational sets of equipping variables. Vertex variables correspond to the vertices of the structure, while the relational ones correspond to the arcs. The article describes an algorithm for the canonical transformation (declusterization) of the relational structures into the vertex ones. This transformation establishes a connection between two types of control metasystems on neighborhood structures.
Keywords: neighborhood structure, vertex equipment, relational equipment, declusterization.
@article{VTAMU_2018_23_124_a7,
     author = {N. M. Mishachev and A. M. Shmyrin},
     title = {Declusterzation of neighborhood structures},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {648--654},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/}
}
TY  - JOUR
AU  - N. M. Mishachev
AU  - A. M. Shmyrin
TI  - Declusterzation of neighborhood structures
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 648
EP  - 654
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/
LA  - ru
ID  - VTAMU_2018_23_124_a7
ER  - 
%0 Journal Article
%A N. M. Mishachev
%A A. M. Shmyrin
%T Declusterzation of neighborhood structures
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 648-654
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/
%G ru
%F VTAMU_2018_23_124_a7
N. M. Mishachev; A. M. Shmyrin. Declusterzation of neighborhood structures. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 648-654. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a7/