On the stability of solutions of nonlinear systems with impulse structure
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 624-636

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we review the results of the authors related to the study of the stability property of solutions for nonlinear systems of differential equations, on the right-hand side of which there are terms containing products of discontinuous functions and distributions. The solutions of such systems are formalized by the closure of the set of smooth solutions in the space of functions of bounded variation. For such systems, sufficient conditions are obtained for the asymptotic stability of unperturbed solutions.
Keywords: nonlinear systems, stability, asymptotic stability.
Mots-clés : impulse action
@article{VTAMU_2018_23_124_a4,
     author = {N. I. Zhelonkina and A. N. Sesekin},
     title = {On the stability of solutions of nonlinear systems with impulse structure},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {624--636},
     publisher = {mathdoc},
     volume = {23},
     number = {124},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a4/}
}
TY  - JOUR
AU  - N. I. Zhelonkina
AU  - A. N. Sesekin
TI  - On the stability of solutions of nonlinear systems with impulse structure
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 624
EP  - 636
VL  - 23
IS  - 124
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a4/
LA  - ru
ID  - VTAMU_2018_23_124_a4
ER  - 
%0 Journal Article
%A N. I. Zhelonkina
%A A. N. Sesekin
%T On the stability of solutions of nonlinear systems with impulse structure
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 624-636
%V 23
%N 124
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a4/
%G ru
%F VTAMU_2018_23_124_a4
N. I. Zhelonkina; A. N. Sesekin. On the stability of solutions of nonlinear systems with impulse structure. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 624-636. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a4/