@article{VTAMU_2018_23_124_a30,
author = {R. I. Shevchenko and Yu. F. Dolgii},
title = {Discrete procedure of optimal stabilization for periodic linear systems of differential equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {891--906},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/}
}
TY - JOUR AU - R. I. Shevchenko AU - Yu. F. Dolgii TI - Discrete procedure of optimal stabilization for periodic linear systems of differential equations JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 891 EP - 906 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/ LA - ru ID - VTAMU_2018_23_124_a30 ER -
%0 Journal Article %A R. I. Shevchenko %A Yu. F. Dolgii %T Discrete procedure of optimal stabilization for periodic linear systems of differential equations %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 891-906 %V 23 %N 124 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/ %G ru %F VTAMU_2018_23_124_a30
R. I. Shevchenko; Yu. F. Dolgii. Discrete procedure of optimal stabilization for periodic linear systems of differential equations. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 891-906. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/
[1] G. Wang, Y. Xu, Periodic Feedback Stabilization for Linear Periodic Evolution equations, Springer, New York, 2016, 127 pp.
[2] D. Aeyels, J. L. Willems, “Pole assignment for linear periodic systems by memoryless output feedback”, IEEE Transactions on Automatic Control, 40:4 (1995), 735–739
[3] A. Varga, “Robust and minimum norm pole assignment with periodic state feedback”, IEEE Transactions on Automatic Control, 45:5 (2000), 1017–1022
[4] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Mir Publ., Moscow, 1977, 656 pp. (In Russian)
[5] A. Stephenson, “On induced stability”, Philosophical Magazine and Journal of Science, 15:86 (1908), 233–236
[6] K. Furuta, M. Iwase, “Swing-up time analysis of pendulum”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52:3 (2004), 153–163
[7] A. V. Beznos, A. A. Grishin, A. V. Lenskiy, D. E. Okhotsimskiy, A. M. Formal'skiy, “A flywheel use-based control for a pendulum with a fixed suspension point”, Journal of Computer and Systems Sciences International, 2004, no. 1, 27–38 (In Russian)
[8] M. W. Spong, P. Corke, R. Lozano, “Nonlinear control of the reaction wheel pendulum”, Automatica, 37:11 (2001), 1845–1851
[9] D. V. Grachikov, G. N. Lebedev, M. E. Semenov, O. I. Kanishcheva, “Stabilization, mistiming and optimal control of the inverted pendulum with hysteresis properties”, Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, 2013, no. 1, 29–37 (In Russian)
[10] A. Varga, “On solving discrete-time periodic Riccati equations”, IFAC Proceedings Volumes, 38:1 (2005), 254–359
[11] A. Bojanczyk, G. H. Golub, ,P. Van Dooren, “The periodic Schur decomposition. Algorithms and applications”, SPIE Conference Proceedings, 1770 (1992), 31–42
[12] A. I. Egorov, Riccati Equations, Solon-Press, Moscow, 2017, 447 pp. (In Russian)
[13] V. M. Starzhinskiy, Applied Methods of Nonlinear Oscillations, Fizmatlit Publ., Moscow, 1977, 256 pp. (In Russian)