Discrete procedure of optimal stabilization for periodic linear systems of differential equations
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 891-906 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose procedure to solve the optimal stabilization problem for linear periodic systems of differential equations. Stabilizing controls, formed as a feedback, are defined by the system states at the fixed instants of time. Equivalent discrete-time linear periodic problem of optimal stabilization is considered. We propose a special procedure for the solution of discrete periodic Riccati equation. We investigate the relation between continuous-time and discrete-time periodic optimal stabilization problems. The proposed method is used for stabilization of mechanical systems.
Keywords: linear periodic system, discrete-time periodic optimal stabilization problem, discrete periodic Riccati equation.
@article{VTAMU_2018_23_124_a30,
     author = {R. I. Shevchenko and Yu. F. Dolgii},
     title = {Discrete procedure of optimal stabilization for periodic linear systems of differential equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {891--906},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/}
}
TY  - JOUR
AU  - R. I. Shevchenko
AU  - Yu. F. Dolgii
TI  - Discrete procedure of optimal stabilization for periodic linear systems of differential equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 891
EP  - 906
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/
LA  - ru
ID  - VTAMU_2018_23_124_a30
ER  - 
%0 Journal Article
%A R. I. Shevchenko
%A Yu. F. Dolgii
%T Discrete procedure of optimal stabilization for periodic linear systems of differential equations
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 891-906
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/
%G ru
%F VTAMU_2018_23_124_a30
R. I. Shevchenko; Yu. F. Dolgii. Discrete procedure of optimal stabilization for periodic linear systems of differential equations. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 891-906. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a30/

[1] G. Wang, Y. Xu, Periodic Feedback Stabilization for Linear Periodic Evolution equations, Springer, New York, 2016, 127 pp.

[2] D. Aeyels, J. L. Willems, “Pole assignment for linear periodic systems by memoryless output feedback”, IEEE Transactions on Automatic Control, 40:4 (1995), 735–739

[3] A. Varga, “Robust and minimum norm pole assignment with periodic state feedback”, IEEE Transactions on Automatic Control, 45:5 (2000), 1017–1022

[4] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Mir Publ., Moscow, 1977, 656 pp. (In Russian)

[5] A. Stephenson, “On induced stability”, Philosophical Magazine and Journal of Science, 15:86 (1908), 233–236

[6] K. Furuta, M. Iwase, “Swing-up time analysis of pendulum”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52:3 (2004), 153–163

[7] A. V. Beznos, A. A. Grishin, A. V. Lenskiy, D. E. Okhotsimskiy, A. M. Formal'skiy, “A flywheel use-based control for a pendulum with a fixed suspension point”, Journal of Computer and Systems Sciences International, 2004, no. 1, 27–38 (In Russian)

[8] M. W. Spong, P. Corke, R. Lozano, “Nonlinear control of the reaction wheel pendulum”, Automatica, 37:11 (2001), 1845–1851

[9] D. V. Grachikov, G. N. Lebedev, M. E. Semenov, O. I. Kanishcheva, “Stabilization, mistiming and optimal control of the inverted pendulum with hysteresis properties”, Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, 2013, no. 1, 29–37 (In Russian)

[10] A. Varga, “On solving discrete-time periodic Riccati equations”, IFAC Proceedings Volumes, 38:1 (2005), 254–359

[11] A. Bojanczyk, G. H. Golub, ,P. Van Dooren, “The periodic Schur decomposition. Algorithms and applications”, SPIE Conference Proceedings, 1770 (1992), 31–42

[12] A. I. Egorov, Riccati Equations, Solon-Press, Moscow, 2017, 447 pp. (In Russian)

[13] V. M. Starzhinskiy, Applied Methods of Nonlinear Oscillations, Fizmatlit Publ., Moscow, 1977, 256 pp. (In Russian)