Mots-clés : parabolic equation, implicit Euler method.
@article{VTAMU_2018_23_124_a3,
author = {A. S. Bondarev},
title = {The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {617--623},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/}
}
TY - JOUR AU - A. S. Bondarev TI - The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 617 EP - 623 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/ LA - ru ID - VTAMU_2018_23_124_a3 ER -
%0 Journal Article %A A. S. Bondarev %T The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 617-623 %V 23 %N 124 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/ %G ru %F VTAMU_2018_23_124_a3
A. S. Bondarev. The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 617-623. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/
[1] A. S. Bondarev, V. V. Smagin, “The convergence of projection-difference method of approximate solution of parabolic equation with a periodic condition on the solution”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 2, 81–94 (In Russian)
[2] V. V. Smagin, “Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations”, Mathematical Notes, 62:6 (1997), 898–909 (In Russian)
[3] J.-P. Aubin, Approximate Solution of the Elliptic Boundary Problems, Mir Publ., Moscow, 1977, 384 pp.
[4] J.-L. Lions, E'. Magenes, Inhomogeneous Boundary Problems and Its Applications, Mir Publ., Moscow, 1971, 372 pp.
[5] A. S. Bondarev, “The solvability of the variational parabolic equation with a periodic condition on the solution”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2015, no. 4, 78–88 (In Russian)
[6] G. M. Vaynikko, P. E. Oya, “About the convergence and the velocity of convergence of the Galerkin's method for abstract evolutionary equations”, Differential Equations, 11:7 (1975), 1269–1277 (In Russian) | MR
[7] G. I. Marchuk, V. I. Agoshkov, Introduction to Projection-Difference Methods, Nauka Publ., Moscow, 1981, 416 pp. | MR