The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 617-623
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A smooth soluble abstract linear parabolic equation with the periodic condition on the solution is treated in a separable Hilbert space. This problem is solved approximately by a projection-difference method using the Galerkin method in space and the implicit Euler scheme in time. Effective both in time and in space strong-norm error estimates for approximate solutions, which imply convergence of approximate solutions to the exact solution and order of convergence rate depending of the smoothness of the exact solution, are obtained.
Keywords: Hilbert space, smooth solvability, periodic condition
Mots-clés : parabolic equation, implicit Euler method.
@article{VTAMU_2018_23_124_a3,
     author = {A. S. Bondarev},
     title = {The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {617--623},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/}
}
TY  - JOUR
AU  - A. S. Bondarev
TI  - The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 617
EP  - 623
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/
LA  - ru
ID  - VTAMU_2018_23_124_a3
ER  - 
%0 Journal Article
%A A. S. Bondarev
%T The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 617-623
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/
%G ru
%F VTAMU_2018_23_124_a3
A. S. Bondarev. The strong-norm convergence of a projection-difference method of solution of a parabolic equation with the periodic condition on the solution. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 617-623. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a3/

[1] A. S. Bondarev, V. V. Smagin, “The convergence of projection-difference method of approximate solution of parabolic equation with a periodic condition on the solution”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 2, 81–94 (In Russian)

[2] V. V. Smagin, “Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations”, Mathematical Notes, 62:6 (1997), 898–909 (In Russian)

[3] J.-P. Aubin, Approximate Solution of the Elliptic Boundary Problems, Mir Publ., Moscow, 1977, 384 pp.

[4] J.-L. Lions, E'. Magenes, Inhomogeneous Boundary Problems and Its Applications, Mir Publ., Moscow, 1971, 372 pp.

[5] A. S. Bondarev, “The solvability of the variational parabolic equation with a periodic condition on the solution”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2015, no. 4, 78–88 (In Russian)

[6] G. M. Vaynikko, P. E. Oya, “About the convergence and the velocity of convergence of the Galerkin's method for abstract evolutionary equations”, Differential Equations, 11:7 (1975), 1269–1277 (In Russian) | MR

[7] G. I. Marchuk, V. I. Agoshkov, Introduction to Projection-Difference Methods, Nauka Publ., Moscow, 1981, 416 pp. | MR