Mots-clés : simple motions
@article{VTAMU_2018_23_124_a29,
author = {L. G. Shagalova},
title = {The value function of a differential game with simple motions and an integro-terminal cost},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {877--890},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/}
}
TY - JOUR AU - L. G. Shagalova TI - The value function of a differential game with simple motions and an integro-terminal cost JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 877 EP - 890 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/ LA - ru ID - VTAMU_2018_23_124_a29 ER -
%0 Journal Article %A L. G. Shagalova %T The value function of a differential game with simple motions and an integro-terminal cost %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 877-890 %V 23 %N 124 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/ %G ru %F VTAMU_2018_23_124_a29
L. G. Shagalova. The value function of a differential game with simple motions and an integro-terminal cost. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 877-890. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/
[1] M. Pachter, Y. Yavin, “Simple-motion pursuitevasion differential games. Part 1: Stroboscopic strategies in collision-course guidance and proportional navigation”, Journal of Optimization Theory and Applications, 51:1 (1986), 95–127
[2] L. A. Petrosjan, Differential games of pursuit, v. 2, Optimization, World Scientific Publ., Singapore, 1993
[3] L. V. Kamneva, V. S. Patsko, “Construction of a maximal stable bridge in games with simple motions on the plane”, Proceedings of the Steklov Institute of Mathematics, 292:1 (2016), 125–139
[4] N. N. Krasovskiy, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974, 456 pp. (In Russian)
[5] N. N. Krasovskiy, A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag Inc., New York, 1988, 517 pp.
[6] A. I. Subbotin, Minimax Inequalities and Hamilton–Jacobi Equations, Nauka Publ., Moscow, 1991 (In Russian)
[7] A. I. Subbotin, Generalized Solutions of First Order PDEs. The Dynamical Optimization Perspective, Birkhauser, Boston, 1995
[8] M. G. Crandall, P. L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Transactions of the American Mathematical Society, 377:1 (1983), 1–42
[9] A. I. Subbotin, L. G. Shagalova, “A piecewise linear solution of the Cauchy problem for the Hamilton-Jacobi equation”, Doklady Mathematics, 325:5 (1992), 144–148 (In Russian)
[10] L. G. Shagalova, “A piecewise linear minimax solution of the Hamilton-Jacobi equation”, IFAC Proceedings Volumes, 31:13 (1998), 193–197
[11] L. G. Shagalova, “A piecewise linear value function of a differential game with simple motions”, Tambov University Reports. Series: Natural and Technical Sciences, 12:4 (2007), 564–565 (In Russian)
[12] E. Hopf, “Generalized solutions of non-linear equations of first order”, Journal of Mathematics and Mechanics, 14:6 (1965), 951–973
[13] B. N. Pshenichnyi, M. I. Sagaidak, “Differential games of prescribed duration”, Cybernetics, 1970, no. 6, 72–83
[14] M. Bardi, L. Evans, “On Hopf's formulas for solutions of Hamilton–Jacobi equations”, Nonlinear Analysis: Theory, Methods and Applications, 8:11 (1984), 1373–1381