The value function of a differential game with simple motions and an integro-terminal cost
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 877-890 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An antagonistic positional differential game of two persons is considered. The dynamics of the system is described by a differential equation with simple motions, and the payoff functional is integro-terminal. For the case when the terminal function and the Hamiltonian are piecewise linear, and the dimension of the state space is two, a finite algorithm for the exact construction of the value function is proposed.
Keywords: differential game, value function, Hamilton-Jacobi equation, algorithm.
Mots-clés : simple motions
@article{VTAMU_2018_23_124_a29,
     author = {L. G. Shagalova},
     title = {The value function of a differential game with simple motions and an integro-terminal cost},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {877--890},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/}
}
TY  - JOUR
AU  - L. G. Shagalova
TI  - The value function of a differential game with simple motions and an integro-terminal cost
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 877
EP  - 890
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/
LA  - ru
ID  - VTAMU_2018_23_124_a29
ER  - 
%0 Journal Article
%A L. G. Shagalova
%T The value function of a differential game with simple motions and an integro-terminal cost
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 877-890
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/
%G ru
%F VTAMU_2018_23_124_a29
L. G. Shagalova. The value function of a differential game with simple motions and an integro-terminal cost. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 877-890. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a29/

[1] M. Pachter, Y. Yavin, “Simple-motion pursuitevasion differential games. Part 1: Stroboscopic strategies in collision-course guidance and proportional navigation”, Journal of Optimization Theory and Applications, 51:1 (1986), 95–127

[2] L. A. Petrosjan, Differential games of pursuit, v. 2, Optimization, World Scientific Publ., Singapore, 1993

[3] L. V. Kamneva, V. S. Patsko, “Construction of a maximal stable bridge in games with simple motions on the plane”, Proceedings of the Steklov Institute of Mathematics, 292:1 (2016), 125–139

[4] N. N. Krasovskiy, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974, 456 pp. (In Russian)

[5] N. N. Krasovskiy, A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag Inc., New York, 1988, 517 pp.

[6] A. I. Subbotin, Minimax Inequalities and Hamilton–Jacobi Equations, Nauka Publ., Moscow, 1991 (In Russian)

[7] A. I. Subbotin, Generalized Solutions of First Order PDEs. The Dynamical Optimization Perspective, Birkhauser, Boston, 1995

[8] M. G. Crandall, P. L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Transactions of the American Mathematical Society, 377:1 (1983), 1–42

[9] A. I. Subbotin, L. G. Shagalova, “A piecewise linear solution of the Cauchy problem for the Hamilton-Jacobi equation”, Doklady Mathematics, 325:5 (1992), 144–148 (In Russian)

[10] L. G. Shagalova, “A piecewise linear minimax solution of the Hamilton-Jacobi equation”, IFAC Proceedings Volumes, 31:13 (1998), 193–197

[11] L. G. Shagalova, “A piecewise linear value function of a differential game with simple motions”, Tambov University Reports. Series: Natural and Technical Sciences, 12:4 (2007), 564–565 (In Russian)

[12] E. Hopf, “Generalized solutions of non-linear equations of first order”, Journal of Mathematics and Mechanics, 14:6 (1965), 951–973

[13] B. N. Pshenichnyi, M. I. Sagaidak, “Differential games of prescribed duration”, Cybernetics, 1970, no. 6, 72–83

[14] M. Bardi, L. Evans, “On Hopf's formulas for solutions of Hamilton–Jacobi equations”, Nonlinear Analysis: Theory, Methods and Applications, 8:11 (1984), 1373–1381