On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 861-876 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give strict justification for derivative formulas of functionals in problems approximating free time optimal control problems in the frame of sliding nodes method and control parametrization technique. As example we present results of numerical solution for landing on the Moon problem.
Keywords: free time optimal control problem, control parametrization technique, sliding nodes method.
@article{VTAMU_2018_23_124_a28,
     author = {A. V. Chernov},
     title = {On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {861--876},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a28/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 861
EP  - 876
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a28/
LA  - ru
ID  - VTAMU_2018_23_124_a28
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 861-876
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a28/
%G ru
%F VTAMU_2018_23_124_a28
A. V. Chernov. On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 861-876. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a28/

[1] R. Gabasov, F. M. Kirillova, “Optimal real-time control”, The Second International Conference on Control Problems, International Conference (Moscow, 2003), Plenary Reports, Institute of Control Sciences RAS Publ., Moscow, 2003, 20–47 (In Russian)

[2] K. L. Teo, C. J. Goh, K. H. Wong, “A united computational approach to optimal control problems”, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientic Technical, Harlow; John Wiley Sons, Inc., New York, 1991, 329 pp.

[3] A. V. Chernov, “Smooth Finite-Dimensional Approximations of Distributed Optimization Problems via Control Discretization”, Computational Mathematics and Mathematical Physics, 53:12 (2013), 1839–1852

[4] Ju. M. Volin, G. M. Ostrovskii, “On the of successive approximation of optimum behaviour design of certain distributed parameter systems”, Automation and Remote Control, 26:7 (1965), 1197–1204 (In Russian)

[5] Yu. F. Golubev, I. A. Seregin, R. Z. Khayrullin, “The floating nodes method”, Sov. J. Comput. Syst. Sci, 30:2 (1992), 71–76

[6] Yu. N. Lazarev, Trajectories Control of Aerospace Vehicles, Samara Scientific Center of Russian Academy of Sciences Publ., Samara, 2007, 274 pp. (In Russian)

[7] K. L. Teo, L. S. Jennings, H. W. J. Lee, V. Rehbock, “The control parameterization enhancing transform for constrained optimal control problems”, J. Austral. Math. Soc. Ser. B, 40 (1999), 314–335

[8] R. Lee, K. L. Teo, K. H. Wong, G. R. Duan, “Control parameterization enhancing transform for optimal control of switched systems”, Math. Comput. Modelling, 43:11–12 (2006), 1393–1403

[9] A. V. Chernov, “On approximate solution of free time optimal control problems”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2012, no. 6(1), 107–114 (In Russian)

[10] A. V. Chernov, “On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain”, Proceedings of the Steklov Institute of Mathematics, 20:1 (2014), 305–321 (In Russian)

[11] A. V. Chernov, “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55-65

[12] V. N. Afanas'ev, V. B. Kolmanovskii, V. R. Nosov, Mathematical Theory of Control Systems Construction, Vysshaya Shkola Publ., Moscow, 2003, 614 pp. (In Russian)