Maximal linked systems and ultrafilters of widely understood measurable spaces
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 846-860
Voir la notice de l'article provenant de la source Math-Net.Ru
Two types of set families (ultrafilters or maximal filters and maximal linked systems) for widely understood measurable space are considered. The resulting sets of ultrafilters and maximal linked systems are equipped with the pair of comparable topologies (within the meaning of «Wallman» and «Stone»). As a result, two bitopological spaces are realized; one of them turns out a subspace of another. More precisely, ultrafilters are maximal linked systems and the totality of the latter forms a cumulative bitopological space. With employment of topological constructions some characteristic properties of ultrafilters and (in smaller power) maximal linked systems are obtained (the question is necessary and sufficient conditions of maximality of filters and linked systems).
Keywords:
bitopological space, topology, ultrafilters.
@article{VTAMU_2018_23_124_a27,
author = {A. G. Chentsov},
title = {Maximal linked systems and ultrafilters of widely understood measurable spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {846--860},
publisher = {mathdoc},
volume = {23},
number = {124},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/}
}
TY - JOUR AU - A. G. Chentsov TI - Maximal linked systems and ultrafilters of widely understood measurable spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 846 EP - 860 VL - 23 IS - 124 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/ LA - ru ID - VTAMU_2018_23_124_a27 ER -
A. G. Chentsov. Maximal linked systems and ultrafilters of widely understood measurable spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 846-860. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/