Maximal linked systems and ultrafilters of widely understood measurable spaces
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 846-860

Voir la notice de l'article provenant de la source Math-Net.Ru

Two types of set families (ultrafilters or maximal filters and maximal linked systems) for widely understood measurable space are considered. The resulting sets of ultrafilters and maximal linked systems are equipped with the pair of comparable topologies (within the meaning of «Wallman» and «Stone»). As a result, two bitopological spaces are realized; one of them turns out a subspace of another. More precisely, ultrafilters are maximal linked systems and the totality of the latter forms a cumulative bitopological space. With employment of topological constructions some characteristic properties of ultrafilters and (in smaller power) maximal linked systems are obtained (the question is necessary and sufficient conditions of maximality of filters and linked systems).
Keywords: bitopological space, topology, ultrafilters.
@article{VTAMU_2018_23_124_a27,
     author = {A. G. Chentsov},
     title = {Maximal linked systems and ultrafilters of widely understood measurable spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {846--860},
     publisher = {mathdoc},
     volume = {23},
     number = {124},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Maximal linked systems and ultrafilters of widely understood measurable spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 846
EP  - 860
VL  - 23
IS  - 124
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/
LA  - ru
ID  - VTAMU_2018_23_124_a27
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Maximal linked systems and ultrafilters of widely understood measurable spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 846-860
%V 23
%N 124
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/
%G ru
%F VTAMU_2018_23_124_a27
A. G. Chentsov. Maximal linked systems and ultrafilters of widely understood measurable spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 846-860. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a27/