Mots-clés : quasi convex set, tangent cone.
@article{VTAMU_2018_23_124_a25,
author = {R. A. Khachatryan},
title = {On some properties of quasi convex functions and sets},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {824--837},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/}
}
R. A. Khachatryan. On some properties of quasi convex functions and sets. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 824-837. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/
[1] V. V. Ostapenko, “About one condition of almost convexity”, Ukrainian Mathematical Journal, 35:2 (1983), 169–172 (In Russian) | MR
[2] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal Smoothness and the Lower – C2 Property”, Journal of Convex Analysis, 2:1/2 (1995), 117–144 | MR
[3] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izvestiya: Mathematics, 73:3 (2009), 23–66 (In Russian) | MR
[4] S. N. Amirgaliyeva, “The condition of corporeality – generic properties of convex sets”, Bulletin of Kazakh National Technical University named after K.I. Satpayev, 2006, no. 2, 108–115 (In Russian)
[5] K. Leykhtveys, Convex Set, Nauka Publ, Moscow, 1985 (In Russian) | MR
[6] G. E. Ivanov, “Weakly convex sets and their properties”, Mathematical Notes, 79:1 (2006), 60–86 (In Russian) | MR
[7] V. V. Ostapenko, E. V. Ostapenko, S. N. Amirgaliyeva, “Approximate methods for solving differential games with random interference”, Optimization Methods, Optimal Control and Game Theory, 2005, no. 4, 65–74 (In Russian)
[8] J. P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Mir Publ, Moscow, 1988 (In Russian)
[9] F. Klark, Optimization and Nonsmooth Analysis, Nauka Publ, Moscow, 1988 (In Russian)
[10] B. N. Pshenichnyy, R. A. Khachatryan, “On necessary conditions of extremum for nonsmooth functions”, Bulletin of Armenian SSR Academy of Sciences.Series: Mathematics, 18:4 (1983), 318–325 (In Russian) | MR