On some properties of quasi convex functions and sets
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 824-837 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between quasi convexity and proximal smoothness (also known as low $C^2$ property) of functions is verified. For compact sets, it is proved that the properties of quasi convexity and proximal smoothness are equivalent. The Bouligand cones of tangent directions for the sets that are defined by convex functions are constructed.
Keywords: multi-valued map, star set, proximal smooth set, low $C^2$ property
Mots-clés : quasi convex set, tangent cone.
@article{VTAMU_2018_23_124_a25,
     author = {R. A. Khachatryan},
     title = {On some properties of quasi convex functions and sets},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {824--837},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - On some properties of quasi convex functions and sets
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 824
EP  - 837
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/
LA  - ru
ID  - VTAMU_2018_23_124_a25
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T On some properties of quasi convex functions and sets
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 824-837
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/
%G ru
%F VTAMU_2018_23_124_a25
R. A. Khachatryan. On some properties of quasi convex functions and sets. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 824-837. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a25/

[1] V. V. Ostapenko, “About one condition of almost convexity”, Ukrainian Mathematical Journal, 35:2 (1983), 169–172 (In Russian) | MR

[2] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal Smoothness and the Lower – C2 Property”, Journal of Convex Analysis, 2:1/2 (1995), 117–144 | MR

[3] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izvestiya: Mathematics, 73:3 (2009), 23–66 (In Russian) | MR

[4] S. N. Amirgaliyeva, “The condition of corporeality – generic properties of convex sets”, Bulletin of Kazakh National Technical University named after K.I. Satpayev, 2006, no. 2, 108–115 (In Russian)

[5] K. Leykhtveys, Convex Set, Nauka Publ, Moscow, 1985 (In Russian) | MR

[6] G. E. Ivanov, “Weakly convex sets and their properties”, Mathematical Notes, 79:1 (2006), 60–86 (In Russian) | MR

[7] V. V. Ostapenko, E. V. Ostapenko, S. N. Amirgaliyeva, “Approximate methods for solving differential games with random interference”, Optimization Methods, Optimal Control and Game Theory, 2005, no. 4, 65–74 (In Russian)

[8] J. P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Mir Publ, Moscow, 1988 (In Russian)

[9] F. Klark, Optimization and Nonsmooth Analysis, Nauka Publ, Moscow, 1988 (In Russian)

[10] B. N. Pshenichnyy, R. A. Khachatryan, “On necessary conditions of extremum for nonsmooth functions”, Bulletin of Armenian SSR Academy of Sciences.Series: Mathematics, 18:4 (1983), 318–325 (In Russian) | MR