Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 797-804
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A combined (jointing analytical methods and computational procedures) approach to the construction of solutions in a class of boundary-value problems for a Hamiltonian-type equation is proposed. In the class of problems under consideration, the minimax (generalized) solution coincides with the Euclidean distance to the boundary set. The properties of this function are studied depending on the geometry of the boundary set and the differential properties of its boundary. Methods are developed for detecting pseudo-vertices of a boundary set and for constructing singular solution sets with their help. The methods are based on the properties of local diffeomorphisms and use partial one-sided limits. The effectiveness of the research approaches developed is illustrated by the example of solving a planar timecontrol problem for the case of a nonconvex target set with boundary of variable smoothness.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Euclidean distance
Keywords: Hamilton-Jacobi equation, Dirichlet problem, minimax solution, optimal result function, velocity, singular set, local diffeomorphism.
                    
                  
                
                
                Keywords: Hamilton-Jacobi equation, Dirichlet problem, minimax solution, optimal result function, velocity, singular set, local diffeomorphism.
@article{VTAMU_2018_23_124_a22,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Euclidean distance to a closed set as a minimax solution of the {Dirichlet} problem for the {Hamilton-Jacobi} equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {797--804},
     publisher = {mathdoc},
     volume = {23},
     number = {124},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/}
}
                      
                      
                    TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 797 EP - 804 VL - 23 IS - 124 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/ LA - ru ID - VTAMU_2018_23_124_a22 ER -
%0 Journal Article %A A. A. Uspenskii %A P. D. Lebedev %T Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 797-804 %V 23 %N 124 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/ %G ru %F VTAMU_2018_23_124_a22
A. A. Uspenskii; P. D. Lebedev. Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 797-804. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/
