Keywords: Hamilton-Jacobi equation, Dirichlet problem, minimax solution, optimal result function, velocity, singular set, local diffeomorphism.
@article{VTAMU_2018_23_124_a22,
author = {A. A. Uspenskii and P. D. Lebedev},
title = {Euclidean distance to a closed set as a minimax solution of the {Dirichlet} problem for the {Hamilton-Jacobi} equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {797--804},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/}
}
TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 797 EP - 804 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/ LA - ru ID - VTAMU_2018_23_124_a22 ER -
%0 Journal Article %A A. A. Uspenskii %A P. D. Lebedev %T Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 797-804 %V 23 %N 124 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/ %G ru %F VTAMU_2018_23_124_a22
A. A. Uspenskii; P. D. Lebedev. Euclidean distance to a closed set as a minimax solution of the Dirichlet problem for the Hamilton-Jacobi equation. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 797-804. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a22/
[1] A. I. Subbotin, Generalized Solutions of First-Order PDEs. The Dynamical Optimization Perspective, Birkhauser, Boston, 1995
[2] N. N. Krasovskii, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974, 456 pp. (In Russian)
[3] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 14:2 (2008), 182–191 (In Russian)
[4] V. F. Dem'yanov, L. V. Vasil'yev, Nondifferentiable Optimization, Springer-Verlag, New York, 1985
[5] J. W. Bruce ,P. J. Giblin, Curves and Singularities, Cambridge University Press, Cambridge, 1984
[6] A. A. Uspenskii, P. D. Lebedev, “Transversality conditions for solution branches of a nonlinear equation in a time-optimal problem with circular indicatrix”, Proceedings of the Steklov Institute of Mathematics, 14:4 (2008), 82–100 (In Russian)
[7] A. A. Uspenskii, P. D. Lebedev, “On the set of limit values of local diffeomorphisms in wavefront evolution”, Proceedings of the Steklov Institute of Mathematics, 16:1 (2010), 175–185 (In Russian)
[8] A. A. Uspenskii, P. D. Lebedev, “The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set”, Proceedings of the Steklov Institute of Mathematics, 22:1 (2016), 282–293 (In Russian)
[9] A. A. Uspenskii, “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Proceedings of the Steklov Institute of Mathematics, 21:1 (2015), 250–263 (In Russian)
[10] A. A. Uspenskii, P. D. Lebedev, “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikona type equation under the conditions of minimal smoothness of a boundary set”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 28:1 (2018), 59–73 (In Russian)
[11] A. A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proceedings of the Steklov Institute of Mathematics, 20:3 (2014), 276–290 (In Russian)
[12] V. N. Ushakov, A. A. Uspenskii, A. G. Malev, “An estimate of the stability defect for a positional absorption set subjected to discriminant transformations”, Proceedings of the Steklov Institute of Mathematics, 17:2 (2011), 209–224 (In Russian)
[13] A. A. Uspenskii, P. D. Lebedev, “Procedures for Calculating the Nonconvexity Measures of a Plane Set”, Computational Mathematics and Mathematical Physics, 49:3 (2009), 431–440 (In Russian)