Asymptotic solution of first-order equation with small parameter under the derivative with perturbed operator
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 784-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the Cauchy problem for a differential equation with a small parameter when using a Fredholm operator in a Banach space with a certain method. The investigated effect of this parameter. The solution is in the form of an asymptotic expansion. When solving the problems of using the cascade decomposition method for equations, which allows us to split the equation into equations in subspaces.
Keywords: differential equation, asymptotic solution, small parameter, perturbation in the right-hand side, Fredholm operator, boundary layer phenomenon.
@article{VTAMU_2018_23_124_a21,
     author = {V. I. Uskov},
     title = {Asymptotic solution of first-order equation with small parameter under the derivative with perturbed operator},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {784--796},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a21/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Asymptotic solution of first-order equation with small parameter under the derivative with perturbed operator
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 784
EP  - 796
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a21/
LA  - ru
ID  - VTAMU_2018_23_124_a21
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Asymptotic solution of first-order equation with small parameter under the derivative with perturbed operator
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 784-796
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a21/
%G ru
%F VTAMU_2018_23_124_a21
V. I. Uskov. Asymptotic solution of first-order equation with small parameter under the derivative with perturbed operator. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 784-796. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a21/

[1] M. I. Vishik, L. A. Lyusternik, “Regular degeneracy and boundary layer for linear differential equations with a small parameter”, Russian Mathematical Surveys, 12:5 (1957), 3–122 (In Russian)

[2] S. P. Zubova, V. I. Uskov, “Applications of the matrix-differential operator to the solution of problems for partial differential equations”, The Results of Science, Selected Works of the International Symposium on Fundamental and Applied Problems of Science (Moscow, 2017), Proceedings of the conference, 31, 2017, 253 (In Russian)

[3] S. G. Krein, N. Z. Kan, “Asymptotic method in the problem of oscillations of a highly viscous fluid”, Journal of Applied Mathematics and Mechanics, 33:3 (1969), 456–464 (In Russian)

[4] V. A. Trenogin, “Development and applications of the Lyusternik–Vishik asymptotic method”, Russian Mathematical Surveys, 25:4(154) (1970), 123–156 (In Russian)

[5] S. A. Lomov, I. S. Lomov, Fundamentals of the Mathematical Theory of the Boundary Layer, Moscow State University, Moscow, 2011, 456 pp. (In Russian)

[6] S. P. Zubova, V. I. Uskov, “The asymptotic solution of a singularly perturbed cauchy problem for the first-order equation in a Banach space”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2016, no. 3, 143–155 (In Russian)

[7] S. M. Nikolsky, “Linear equations in linear normed spaces”, Mathematics of the USSR - Izvestiya, 7:3 (1943), 147–166 (In Russian)

[8] S. P. Zubova, K. I. Chernyshov, “On a linear differential equation with a Fredholm operator under the derivative”, Differential Equations and Its Applications, 1976, no. 14, 21–39 (In Russian)

[9] S. P. Zubova, V. I. Uskov, “Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case”, Mathematical Notes, 103:3 (2018), 392–403 (In Russian)

[10] S. P. Zubova, “On the role of perturbations in the Cauchy problem for an equation with a Fredholm operator under the derivative”, Proceedings of the Russian Academy of Sciences, 454:4 (2014), 383–386 (In Russian)

[11] S. G. Krein, Linear Differential Equations in a Banach Space, Nauka Publ., Moscow, 1967, 464 pp. (In Russian)

[12] A. B. Vasil'eva, V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka Publ., Moscow, 1973, 272 pp. (In Russian)