@article{VTAMU_2018_23_124_a2,
author = {A. L. Bagno and A. M. Tarasyev},
title = {Asymptotics of value function in models of economic growth},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {605--616},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/}
}
TY - JOUR AU - A. L. Bagno AU - A. M. Tarasyev TI - Asymptotics of value function in models of economic growth JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 605 EP - 616 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/ LA - ru ID - VTAMU_2018_23_124_a2 ER -
A. L. Bagno; A. M. Tarasyev. Asymptotics of value function in models of economic growth. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 605-616. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/
[1] A. M. Tarasyev, A. A. Uspenskiy, V. N. Ushakov, “Approximate schemes and finite-difference operators for construction of the generalized solutions of Hamilton-Jacobi equations”, Journal of Computer and Systems Sciences International, 1994, no. 3, 173–185 (In Russian)
[2] N. N. Krasovskiy, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974, 456 pp. (In Russian) | MR
[3] A. I. Subbotin, Minimax Inequalities and Hamilton-Jacobi Equations, Nauka Publ., Moscow, 1991, 216 pp. (In Russian) | MR
[4] A. I. Subbotin, A. M. Tarasyev, “Conjugate derivatives of the value function of a differential game”, Proceedings of the USSR Academy of Sciences, 283:3 (1985), 559–564 (In Russian) | MR
[5] N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, L. G. Shagalova, The Method of Characteristics for the Hamilton-Jacobi-Bellman Equation, Ural Branch of the Russian Academy of Sciences Publ., Ekaterinburg, 2013, 244 pp. (In Russian)
[6] R. A. Sultanova, Minimax equations solutions with partial derivative, cand. phys.-math. sci. diss., Ekaterinburg, 1995, 192 pp. (In Russian)
[7] M. G. Crandall, P. -L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR
[8] S. M. Aseyev, A. V. Kryazhimskiy, “The Pontryagin maximum principle and optimal economic growth problems”, Proceedings of the Steklov Institute of Mathematics, 257, 2007, 5–271 (In Russian)
[9] A. L. Bagno, A. M. Tarasyev, “Properties of the value function in optimal control problems with infinite horizon”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 26:1 (2016), 3–14 (In Russian) | MR
[10] M. S. Nikolskii, “On the local Lipschitz property of the Bellman function in an optimization problem”, Proceedings of the Steklov Institute of Mathematics, 10, no. 2, 2004, 106–115 (In Russian)
[11] R. A. Adiatulina, A. M. Tarasyev, “A differential game of unlimited duration”, Journal of Applied Mathematics and Mechanics, 51:4 (1987), 531–537 (In Russian) | MR
[12] I. C. Capuzzo Dolcetta, H. Ishii, “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz, 11:2 (1984), 161–181 | MR
[13] G. Klaassen, A. M. Tarasyev, A. V. Kryazhimskiy, “Multiequilibrium game of timing and competition of gas pipeline projects”, Journal of Optimization Theory and Applications, 120:1 (12004), 147–179 | DOI | MR
[14] A. M. Tarasyev, “Control synthesis in grid schemes for Hamilton-Jacobi equations”, Annals of Operations Research, 88 (1999), 337–359 | DOI | MR
[15] M. Intriligator, Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, per. s angl. G.I. Zhukovoi, F.Ya. Kelmana, Airis-press, M., 2002, 576 pp.