Asymptotics of value function in models of economic growth
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 605-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic behavior of the value function is studied in an infinite horizon optimal control problem with an unlimited integrand index discounted in the objective functional. Optimal control problems of such type are related to analysis of trends of trajectories in models of economic growth. Stability properties of the value function are expressed in the infinitesimal form. Such representation implies that the value function coincides with the generalized minimax solution of the Hamilton-Jacobi equation. It is shown that that the boundary condition for the value function is substituted by the property of the sublinear asymptotic behavior. An example is given to illustrate construction of the value function as the generalized minimax solution in economic growth models.
Keywords: optimal control, value function, stability properties, Hamilton-Jacobi equations, asymptotics, economic growth.
@article{VTAMU_2018_23_124_a2,
     author = {A. L. Bagno and A. M. Tarasyev},
     title = {Asymptotics of value function in models of economic growth},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {605--616},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/}
}
TY  - JOUR
AU  - A. L. Bagno
AU  - A. M. Tarasyev
TI  - Asymptotics of value function in models of economic growth
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 605
EP  - 616
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/
LA  - ru
ID  - VTAMU_2018_23_124_a2
ER  - 
%0 Journal Article
%A A. L. Bagno
%A A. M. Tarasyev
%T Asymptotics of value function in models of economic growth
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 605-616
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/
%G ru
%F VTAMU_2018_23_124_a2
A. L. Bagno; A. M. Tarasyev. Asymptotics of value function in models of economic growth. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 605-616. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a2/

[1] A. M. Tarasyev, A. A. Uspenskiy, V. N. Ushakov, “Approximate schemes and finite-difference operators for construction of the generalized solutions of Hamilton-Jacobi equations”, Journal of Computer and Systems Sciences International, 1994, no. 3, 173–185 (In Russian)

[2] N. N. Krasovskiy, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974, 456 pp. (In Russian) | MR

[3] A. I. Subbotin, Minimax Inequalities and Hamilton-Jacobi Equations, Nauka Publ., Moscow, 1991, 216 pp. (In Russian) | MR

[4] A. I. Subbotin, A. M. Tarasyev, “Conjugate derivatives of the value function of a differential game”, Proceedings of the USSR Academy of Sciences, 283:3 (1985), 559–564 (In Russian) | MR

[5] N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, L. G. Shagalova, The Method of Characteristics for the Hamilton-Jacobi-Bellman Equation, Ural Branch of the Russian Academy of Sciences Publ., Ekaterinburg, 2013, 244 pp. (In Russian)

[6] R. A. Sultanova, Minimax equations solutions with partial derivative, cand. phys.-math. sci. diss., Ekaterinburg, 1995, 192 pp. (In Russian)

[7] M. G. Crandall, P. -L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR

[8] S. M. Aseyev, A. V. Kryazhimskiy, “The Pontryagin maximum principle and optimal economic growth problems”, Proceedings of the Steklov Institute of Mathematics, 257, 2007, 5–271 (In Russian)

[9] A. L. Bagno, A. M. Tarasyev, “Properties of the value function in optimal control problems with infinite horizon”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 26:1 (2016), 3–14 (In Russian) | MR

[10] M. S. Nikolskii, “On the local Lipschitz property of the Bellman function in an optimization problem”, Proceedings of the Steklov Institute of Mathematics, 10, no. 2, 2004, 106–115 (In Russian)

[11] R. A. Adiatulina, A. M. Tarasyev, “A differential game of unlimited duration”, Journal of Applied Mathematics and Mechanics, 51:4 (1987), 531–537 (In Russian) | MR

[12] I. C. Capuzzo Dolcetta, H. Ishii, “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz, 11:2 (1984), 161–181 | MR

[13] G. Klaassen, A. M. Tarasyev, A. V. Kryazhimskiy, “Multiequilibrium game of timing and competition of gas pipeline projects”, Journal of Optimization Theory and Applications, 120:1 (12004), 147–179 | DOI | MR

[14] A. M. Tarasyev, “Control synthesis in grid schemes for Hamilton-Jacobi equations”, Annals of Operations Research, 88 (1999), 337–359 | DOI | MR

[15] M. Intriligator, Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, per. s angl. G.I. Zhukovoi, F.Ya. Kelmana, Airis-press, M., 2002, 576 pp.