@article{VTAMU_2018_23_124_a19,
author = {M. I. Sumin},
title = {Why regularization of {Lagrange} principle and {Pontryagin} maximum principle is needed and what it gives},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {757--775},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a19/}
}
TY - JOUR AU - M. I. Sumin TI - Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 757 EP - 775 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a19/ LA - ru ID - VTAMU_2018_23_124_a19 ER -
%0 Journal Article %A M. I. Sumin %T Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 757-775 %V 23 %N 124 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a19/ %G ru %F VTAMU_2018_23_124_a19
M. I. Sumin. Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 757-775. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a19/
[1] F. P. Vasilev, Metody optimizatsii, Izd-vo MTsNMO, M., 2011, 433 pp. (In Russian)
[2] M. I. Sumin, “Regularized parametric Kuhn-Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1594–1615 (In Russian)
[3] M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 25–49 (In Russian)
[4] V. A Trenogin, Functional Analysis, Nauka Publ., Moscow, 1980, 496 pp. (In Russian)
[5] Functional Analysis, eds. S. G Krein, Nauka Publ., Moscow, 1972, 544 pp. (In Russian)
[6] V. I. Plotnikov, “The convergence of finite-dimensional approximations (in the problem of the optimal heating of an inhomogeneous body of arbitrary shape”, Computational Mathematics and Mathematical Physics, 8:1 (1968), 136–157 (In Russian)
[7] V. I. Plotnikov, “An energy inequality and the overdeterminacy property of a system of eigenfunctions”, Mathematics of the USSR – Izvestiya, 32:4 (1968), 743–755 (In Russian)
[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka Publ., Moscow, 1967, 736 pp. (In Russian)
[9] M. I. Sumin, “A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation”, Computational Mathematics and Mathematical Physics, 44:11 (2004), 2001–2019 (In Russian)
[10] M. I. Sumin, “Duality-based regularization in a linear convex mathematical programming problem”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 602–625 (In Russian)
[11] M. I. Sumin, “Parametric dual regularization in optimization, optimal control and inverse problems”, Tambov University Reports. Series: Natural and Technical Sciences, 15:1 (2010), 467–492 (In Russian)
[12] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 26:4 (2016), 474–489 (In Russian)
[13] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 27:1 (2017), 26–41 (In Russian)
[14] F. A. Kuterin, M. I. Sumin, “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Mathematical Models and Computer Simulations, 28:11 (2016), 3–18 (In Russian)
[15] F. A. Kuterin, M. I. Sumin, “Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems”, Computational Mathematics and Mathematical Physics, 57:1 (2017), 55–68 (In Russian)
[16] A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina, “Stable sequential Lagrange principles in the inverse final observation problem for the system of Maxwell equations in the quasistationary magnetic approximation”, Differential Equations, 52:5 (2016), 608–624 (In Russian)
[17] A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina, “Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential lagrange principles for their solving”, Computational Mathematics and Mathematical Physics, 57:2 (2017), 187–209 (In Russian)
[18] M. I. Sumin, Ill-Posed Problems and their Solutions, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 2009, 289 pp. (In Russian)
[19] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972, 531 pp.