Approximation of hyperbolic differential inclusions of fractional order with impulses
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper there are considered hyperbolic differential inclusions of fractional order with impulses. Here we represent the concept of approximate solution ($\delta$-solution) for a hyperbolic differential inclusion of fractional order with impulses. The asymptotic properties of solutions sets to approximating differential inclusions of fractional order with external disturbance are derived.
Keywords: hyperbolic differential inclusions, fractional derivative, impulses, approximating map, modulus of continuity
Mots-clés : radius of external perturbations, $\delta$-solution.
@article{VTAMU_2018_23_124_a17,
     author = {V. V. Skomorokhov},
     title = {Approximation of hyperbolic differential inclusions of fractional order with impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {738--744},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/}
}
TY  - JOUR
AU  - V. V. Skomorokhov
TI  - Approximation of hyperbolic differential inclusions of fractional order with impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 738
EP  - 744
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/
LA  - ru
ID  - VTAMU_2018_23_124_a17
ER  - 
%0 Journal Article
%A V. V. Skomorokhov
%T Approximation of hyperbolic differential inclusions of fractional order with impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 738-744
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/
%G ru
%F VTAMU_2018_23_124_a17
V. V. Skomorokhov. Approximation of hyperbolic differential inclusions of fractional order with impulses. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/

[1] A. F. Filippov, Differential Equations with Discontinuity Right Part, Nauka Publ., Moscow, 1985 (In Russian)

[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Nauka i tekhnika, Minsk, 1987 (In Russian)

[3] A. N. Vityuk, “Existence of solutions of partial differential inclusions of fractional order”, Russian Mathematics, 1997, no. 8, 13–19 (In Russian)

[4] A. M. Samoylenko, N. A. Perestyuk, Impulsive Differential Equations, Vishcha shkola, Kiev, 1987 (In Russian)

[5] S. T. Zavalishchin, A. N. Sesekin, Impulse Processes. Models and Applications, Nauka Publ., Moscow, 1991 (In Russian)

[6] A. I. Bulgakov, V. V. Skomorokhov, O. V. Filippova, “Asymptotic properties of the set of $\delta$-solutions to differential inclusion with impulses”, Tambov University Reports. Series: Natural and Technical Sciences, 16:4 (2011), 1039–1043 (In Russian)