Approximation of hyperbolic differential inclusions of fractional order with impulses
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper there are considered hyperbolic differential inclusions of fractional order with impulses. Here we represent the concept of approximate solution ($\delta$-solution) for a hyperbolic differential inclusion of fractional order with impulses. The asymptotic properties of solutions sets to
approximating differential inclusions of fractional order with external disturbance are derived.
Keywords:
hyperbolic differential inclusions, fractional derivative, impulses, approximating map, modulus of continuity
Mots-clés : radius of external perturbations, $\delta$-solution.
Mots-clés : radius of external perturbations, $\delta$-solution.
@article{VTAMU_2018_23_124_a17,
author = {V. V. Skomorokhov},
title = {Approximation of hyperbolic differential inclusions of fractional order with impulses},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {738--744},
publisher = {mathdoc},
volume = {23},
number = {124},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/}
}
TY - JOUR AU - V. V. Skomorokhov TI - Approximation of hyperbolic differential inclusions of fractional order with impulses JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 738 EP - 744 VL - 23 IS - 124 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/ LA - ru ID - VTAMU_2018_23_124_a17 ER -
%0 Journal Article %A V. V. Skomorokhov %T Approximation of hyperbolic differential inclusions of fractional order with impulses %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 738-744 %V 23 %N 124 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/ %G ru %F VTAMU_2018_23_124_a17
V. V. Skomorokhov. Approximation of hyperbolic differential inclusions of fractional order with impulses. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/