Mots-clés : radius of external perturbations, $\delta$-solution.
@article{VTAMU_2018_23_124_a17,
author = {V. V. Skomorokhov},
title = {Approximation of hyperbolic differential inclusions of fractional order with impulses},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {738--744},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/}
}
TY - JOUR AU - V. V. Skomorokhov TI - Approximation of hyperbolic differential inclusions of fractional order with impulses JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 738 EP - 744 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/ LA - ru ID - VTAMU_2018_23_124_a17 ER -
V. V. Skomorokhov. Approximation of hyperbolic differential inclusions of fractional order with impulses. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/
[1] A. F. Filippov, Differential Equations with Discontinuity Right Part, Nauka Publ., Moscow, 1985 (In Russian)
[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Nauka i tekhnika, Minsk, 1987 (In Russian)
[3] A. N. Vityuk, “Existence of solutions of partial differential inclusions of fractional order”, Russian Mathematics, 1997, no. 8, 13–19 (In Russian)
[4] A. M. Samoylenko, N. A. Perestyuk, Impulsive Differential Equations, Vishcha shkola, Kiev, 1987 (In Russian)
[5] S. T. Zavalishchin, A. N. Sesekin, Impulse Processes. Models and Applications, Nauka Publ., Moscow, 1991 (In Russian)
[6] A. I. Bulgakov, V. V. Skomorokhov, O. V. Filippova, “Asymptotic properties of the set of $\delta$-solutions to differential inclusion with impulses”, Tambov University Reports. Series: Natural and Technical Sciences, 16:4 (2011), 1039–1043 (In Russian)