Approximation of hyperbolic differential inclusions of fractional order with impulses
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there are considered hyperbolic differential inclusions of fractional order with impulses. Here we represent the concept of approximate solution ($\delta$-solution) for a hyperbolic differential inclusion of fractional order with impulses. The asymptotic properties of solutions sets to approximating differential inclusions of fractional order with external disturbance are derived.
Keywords: hyperbolic differential inclusions, fractional derivative, impulses, approximating map, modulus of continuity
Mots-clés : radius of external perturbations, $\delta$-solution.
@article{VTAMU_2018_23_124_a17,
     author = {V. V. Skomorokhov},
     title = {Approximation of hyperbolic differential inclusions of fractional order with impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {738--744},
     publisher = {mathdoc},
     volume = {23},
     number = {124},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/}
}
TY  - JOUR
AU  - V. V. Skomorokhov
TI  - Approximation of hyperbolic differential inclusions of fractional order with impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 738
EP  - 744
VL  - 23
IS  - 124
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/
LA  - ru
ID  - VTAMU_2018_23_124_a17
ER  - 
%0 Journal Article
%A V. V. Skomorokhov
%T Approximation of hyperbolic differential inclusions of fractional order with impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 738-744
%V 23
%N 124
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/
%G ru
%F VTAMU_2018_23_124_a17
V. V. Skomorokhov. Approximation of hyperbolic differential inclusions of fractional order with impulses. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 738-744. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a17/