On oscillation of solutions for some nonlinear equations of population dynamics
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 696-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several nonlinear equations being models of population dynamics and hematopoiesis are considered in this paper. For these equations conditions of oscillation for solutions about nontrivial equilibrium position are obtained.
Keywords: functional differential equations, Hutchinson’s equation, Nicholson’s blowflies equation, concentrated delay, distributed delay.
Mots-clés : Lasota-Wazewska equation
@article{VTAMU_2018_23_124_a13,
     author = {T. L. Sabatulina},
     title = {On oscillation of solutions for some nonlinear equations of population dynamics},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {696--706},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/}
}
TY  - JOUR
AU  - T. L. Sabatulina
TI  - On oscillation of solutions for some nonlinear equations of population dynamics
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 696
EP  - 706
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/
LA  - ru
ID  - VTAMU_2018_23_124_a13
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%T On oscillation of solutions for some nonlinear equations of population dynamics
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 696-706
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/
%G ru
%F VTAMU_2018_23_124_a13
T. L. Sabatulina. On oscillation of solutions for some nonlinear equations of population dynamics. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 696-706. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/

[1] L. Berezansky, E. Braverman, “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Mathematical and Computer Modelling, 48 (2008), 287–304

[2] S. A. Gusarenko, A. I. Domoshnitskiy, “About asymptotic and oscillation characteristics of first-order linear scalar functional differential equations”, Differential Equations, 25:12 (1989), 2090–2103 (In Russian)

[3] I. Györi, G. Ladas, Oscillation theory of delay differential equations: with applications, Oxford University Press, New York, 1991, 368 pp.

[4] A. D. Myshkis, “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Sbornik: Mathematics, 28(70):3 (1951), 641–658 (In Russian)

[5] R. G. Koplatadze, T. A. Chanturiya, “About oscillating and monotone solutions of differential first-order equation with retarded argument”, Differential Equations, 18:8 (1982), 1463–1465 (In Russian)

[6] T. L. Sabatulina, “On oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci., 230:5 (2018), 766–769

[7] T. L. Sabatulina, “On oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci., 230:5 (2018), 766–769

[8] V. V. Malygina, T. L. Sabatulina, “Sign-definiteness of solutions and stability of linear differential equations with variable distributed delay”, Russian Mathematics, 2008, no. 8, 73–77 (In Russian)

[9] G. E. Hutchinson, “Circular causal in ecology”, Ann. N. Y. Acad. Sci, 50 (1948), 221–246

[10] M. Wazewska-Czyzewska, A. Lasota, “Mathematical problems of dynamics of red blood cells production (Polish)”, Mat. Stos, 3:6 (1976), 23–40

[11] A. J. Nicholson, “Compensatory reactions of populations to stresses, and their evolutionary significance”, Austral. J. Zool, 1954, no. 2, 1–8

[12] A. Nicholson, “An outline of the dynamics of animal populations”, Austral. J. Zool, 1954, no. 2, 9–65

[13] R. M. May (ed.), “Models for single populations”, Theoretical Ecology: Principles and Applications, Blackwell Scientific, Oxford, 1976, 4–25

[14] W.S. C. Gurney, S. P. Blythe, R. M. Nisbet, “Nicholson's blowflies revisited”, Nature, 1980, no. 287, 17–21