Mots-clés : Lasota-Wazewska equation
@article{VTAMU_2018_23_124_a13,
author = {T. L. Sabatulina},
title = {On oscillation of solutions for some nonlinear equations of population dynamics},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {696--706},
year = {2018},
volume = {23},
number = {124},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/}
}
TY - JOUR AU - T. L. Sabatulina TI - On oscillation of solutions for some nonlinear equations of population dynamics JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 696 EP - 706 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/ LA - ru ID - VTAMU_2018_23_124_a13 ER -
T. L. Sabatulina. On oscillation of solutions for some nonlinear equations of population dynamics. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 696-706. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a13/
[1] L. Berezansky, E. Braverman, “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Mathematical and Computer Modelling, 48 (2008), 287–304
[2] S. A. Gusarenko, A. I. Domoshnitskiy, “About asymptotic and oscillation characteristics of first-order linear scalar functional differential equations”, Differential Equations, 25:12 (1989), 2090–2103 (In Russian)
[3] I. Györi, G. Ladas, Oscillation theory of delay differential equations: with applications, Oxford University Press, New York, 1991, 368 pp.
[4] A. D. Myshkis, “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Sbornik: Mathematics, 28(70):3 (1951), 641–658 (In Russian)
[5] R. G. Koplatadze, T. A. Chanturiya, “About oscillating and monotone solutions of differential first-order equation with retarded argument”, Differential Equations, 18:8 (1982), 1463–1465 (In Russian)
[6] T. L. Sabatulina, “On oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci., 230:5 (2018), 766–769
[7] T. L. Sabatulina, “On oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci., 230:5 (2018), 766–769
[8] V. V. Malygina, T. L. Sabatulina, “Sign-definiteness of solutions and stability of linear differential equations with variable distributed delay”, Russian Mathematics, 2008, no. 8, 73–77 (In Russian)
[9] G. E. Hutchinson, “Circular causal in ecology”, Ann. N. Y. Acad. Sci, 50 (1948), 221–246
[10] M. Wazewska-Czyzewska, A. Lasota, “Mathematical problems of dynamics of red blood cells production (Polish)”, Mat. Stos, 3:6 (1976), 23–40
[11] A. J. Nicholson, “Compensatory reactions of populations to stresses, and their evolutionary significance”, Austral. J. Zool, 1954, no. 2, 1–8
[12] A. Nicholson, “An outline of the dynamics of animal populations”, Austral. J. Zool, 1954, no. 2, 9–65
[13] R. M. May (ed.), “Models for single populations”, Theoretical Ecology: Principles and Applications, Blackwell Scientific, Oxford, 1976, 4–25
[14] W.S. C. Gurney, S. P. Blythe, R. M. Nisbet, “Nicholson's blowflies revisited”, Nature, 1980, no. 287, 17–21