On a controllability problem for a differential inclusion with fractional derivatives of Сaputo
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 679-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper gives the controllability problem for a differential inclusion of fractional order in a Banach space.
Keywords: differential inclusion of fractional order, fixed point, condensing map, measure of noncompactness.
@article{VTAMU_2018_23_124_a11,
     author = {G. Petrosyan and O. Yu. Koroleva},
     title = {On a controllability problem for a differential inclusion with fractional derivatives of {{\CYRS}aputo}},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {679--684},
     year = {2018},
     volume = {23},
     number = {124},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a11/}
}
TY  - JOUR
AU  - G. Petrosyan
AU  - O. Yu. Koroleva
TI  - On a controllability problem for a differential inclusion with fractional derivatives of Сaputo
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 679
EP  - 684
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a11/
LA  - ru
ID  - VTAMU_2018_23_124_a11
ER  - 
%0 Journal Article
%A G. Petrosyan
%A O. Yu. Koroleva
%T On a controllability problem for a differential inclusion with fractional derivatives of Сaputo
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 679-684
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a11/
%G ru
%F VTAMU_2018_23_124_a11
G. Petrosyan; O. Yu. Koroleva. On a controllability problem for a differential inclusion with fractional derivatives of Сaputo. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 679-684. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a11/

[1] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “On semilinear fractional order differential inclusions in banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR

[2] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 96 (2017), 1–21 | DOI | MR

[3] V. V. Obukhovskiy, G. G. Petrosyan, “On the Cauchy problem for functional differential inclusions of fractional order with impulsive characteristics in a banach space”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika - Proceedings of Voronezh State University. Series: Physics. Mathematics, 134:1 (2013), 192–209 (In Russian)

[4] G. G. Petrosyan, M. S. Afanasova, “On the Cauchy problem for a differential inclusion of fractional order with nonlinear boundary conditions”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika - Proceedings of Voronezh State University. Series: Physics. Mathematics, 2017, no. 1, 135–151 (In Russian)

[5] G. G. Petrosyan, “On a nonlocal Cauchy problem for functional differential equations with fractional derivative in the banach space”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika - Proceedings of Voronezh State University. Series: Physics. Mathematics, 2012, no. 2, 207–212 (In Russian)

[6] G. G. Petrosyan, “On the structure of the solutions set of the Cauchy problem for a differential inclusions of fractional order in a Banach space”, Some Questions of Analysis, Algebra, Geometry and Mathematical Education, Voronezh, 2016, 7–8 (In Russian)

[7] Yu.G. Borisovich, B.D. Guelman, A.D. Myshkis, B.V. Obukhovsky, Introduction to The Theory of Many-Valued Separations and Differential Inclusions, Book House “Librokom”, Moscow, 2011 (In Russian)