@article{VTAMU_2018_23_124_a1,
author = {A. Khellaf},
title = {New sufficient conditions in the generalized spectrum approach to deal with spectral pollution},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {595--604},
year = {2018},
volume = {23},
number = {124},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/}
}
TY - JOUR AU - A. Khellaf TI - New sufficient conditions in the generalized spectrum approach to deal with spectral pollution JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 595 EP - 604 VL - 23 IS - 124 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/ LA - en ID - VTAMU_2018_23_124_a1 ER -
A. Khellaf. New sufficient conditions in the generalized spectrum approach to deal with spectral pollution. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 595-604. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/
[1] A. Aslanyan, E. B. Davies, Spectral instability for some Schrodinger operators, arXiv: math/9810063 [math.SP] | MR
[2] J. Rappaz, J. Sanchez Hubert, E. Sanchez Palencia, D. Vassiliev, “On spectral pollution in the finite element approximation of thin elastic 'membrane' shells”, Numer. Math., 75 (1997), 473–500 | DOI | MR
[3] E. B. Davies, “Spectral enclosures and complex resonances for general selfadjoint operators”, LMS J. Comput. Math., 1 (1998), 42–74 | DOI | MR
[4] E. B. Davies, M. Plum, Spectral pollution, LMS J. Comput. Math., 2002 | DOI | MR
[5] D. Boffi, “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form”, Math. of Comp., 69 (1999), 121–140 | DOI | MR
[6] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii Journal of Mathematics, 34 (2013), 45–60 | DOI | MR
[7] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, N. Y., 2001 | MR
[8] M. Marletta, R. Scheichl, “Eigenvalues in Spectral Gaps of Differential Operators”, J. Spectr. Theory, 2:3 (2012), 293–320 | DOI | MR
[9] H. Guebbai, A. Largillier, “Spectra and Pseudospectra of Convection-Diffusion Operator”, Integral Methods in Science and Engineering, Birkhäuser Basel, Boston, 2011 | MR
[10] G. F. Roach, Green's Functions, Cambridge University Press, N.Y., 1982 | MR
[11] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, N.Y., 1997 | MR
[12] L. N. Trefethen, “Pseudospectra of Linear Operators”, SIAM Review, 39:3 (1997), 383–406 | DOI | MR
[13] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM:bookstore, California, 2005, 172 pp. | MR
[14] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, Springer, Basel, 1990 | MR
[15] T. Kato, Perturbation Theory of Linear Operators, v. I, Second edition, Springer-Verlag, Heidelberg–Berlin–New York, 1980 | MR