New sufficient conditions in the generalized spectrum approach to deal with spectral pollution
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 595-604 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we propose new sufficient conditions to solve the spectralpollution problem by using the generalized spectrum method. We give the theoretical foundation of the generalized spectral approach, as well as illustrate its effectivenessby numerical results.
Keywords: generalized spectrum, Schrodinger operator, eigenvalue approximation.
@article{VTAMU_2018_23_124_a1,
     author = {A. Khellaf},
     title = {New sufficient conditions in the generalized spectrum approach to deal with spectral pollution},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {595--604},
     year = {2018},
     volume = {23},
     number = {124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/}
}
TY  - JOUR
AU  - A. Khellaf
TI  - New sufficient conditions in the generalized spectrum approach to deal with spectral pollution
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 595
EP  - 604
VL  - 23
IS  - 124
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/
LA  - en
ID  - VTAMU_2018_23_124_a1
ER  - 
%0 Journal Article
%A A. Khellaf
%T New sufficient conditions in the generalized spectrum approach to deal with spectral pollution
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 595-604
%V 23
%N 124
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/
%G en
%F VTAMU_2018_23_124_a1
A. Khellaf. New sufficient conditions in the generalized spectrum approach to deal with spectral pollution. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 124, pp. 595-604. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_124_a1/

[1] A. Aslanyan, E. B. Davies, Spectral instability for some Schrodinger operators, arXiv: math/9810063 [math.SP] | MR

[2] J. Rappaz, J. Sanchez Hubert, E. Sanchez Palencia, D. Vassiliev, “On spectral pollution in the finite element approximation of thin elastic 'membrane' shells”, Numer. Math., 75 (1997), 473–500 | DOI | MR

[3] E. B. Davies, “Spectral enclosures and complex resonances for general selfadjoint operators”, LMS J. Comput. Math., 1 (1998), 42–74 | DOI | MR

[4] E. B. Davies, M. Plum, Spectral pollution, LMS J. Comput. Math., 2002 | DOI | MR

[5] D. Boffi, “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form”, Math. of Comp., 69 (1999), 121–140 | DOI | MR

[6] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii Journal of Mathematics, 34 (2013), 45–60 | DOI | MR

[7] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, N. Y., 2001 | MR

[8] M. Marletta, R. Scheichl, “Eigenvalues in Spectral Gaps of Differential Operators”, J. Spectr. Theory, 2:3 (2012), 293–320 | DOI | MR

[9] H. Guebbai, A. Largillier, “Spectra and Pseudospectra of Convection-Diffusion Operator”, Integral Methods in Science and Engineering, Birkhäuser Basel, Boston, 2011 | MR

[10] G. F. Roach, Green's Functions, Cambridge University Press, N.Y., 1982 | MR

[11] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, N.Y., 1997 | MR

[12] L. N. Trefethen, “Pseudospectra of Linear Operators”, SIAM Review, 39:3 (1997), 383–406 | DOI | MR

[13] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM:bookstore, California, 2005, 172 pp. | MR

[14] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, Springer, Basel, 1990 | MR

[15] T. Kato, Perturbation Theory of Linear Operators, v. I, Second edition, Springer-Verlag, Heidelberg–Berlin–New York, 1980 | MR