The norm and the logarithmic norm of infinite matrices
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 424-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the norm and the logarithmic norm of infinite matrices in the $l_{\sigma}$ space are studied. Various estimates of these quantities are obtained.
Mots-clés : infinite matrices
Keywords: the norm of a matrix, the logarithmic norm of a matrix, Young’s inequality, Holder’s inequality.
@article{VTAMU_2018_23_123_a9,
     author = {O. I. Kleshchina},
     title = {The norm and the logarithmic norm of infinite matrices},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {424--430},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/}
}
TY  - JOUR
AU  - O. I. Kleshchina
TI  - The norm and the logarithmic norm of infinite matrices
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 424
EP  - 430
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/
LA  - ru
ID  - VTAMU_2018_23_123_a9
ER  - 
%0 Journal Article
%A O. I. Kleshchina
%T The norm and the logarithmic norm of infinite matrices
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 424-430
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/
%G ru
%F VTAMU_2018_23_123_a9
O. I. Kleshchina. The norm and the logarithmic norm of infinite matrices. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 424-430. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/

[1] U. Rudin, Functional Analysis, Mir Publ., Moscow, 1975, 449 pp. (In Russian)

[2] A. I. Perov, I. D. Kostrub, “On the Spectral Abscissa and the Logarithmic Norm”, Mathematical Notes, 101:4 (2017), 562–575 (In Russian)

[3] S. M. Lozinskiy, “Error estimate for numerical integration of ordinary differential equations”, Russian Mathematics, 1958, no. 5, 52–90 (In Russian)

[4] L. A. Lyusternik, V. I. Sobolev, Short Course of Functional Analysis, Vysshaya Shkola Publ., Moscow, 1982, 271 pp. (In Russian) | MR

[5] R. Kuk, Infinite Matrices and Sequence Spaces, Mir Publ., Moscow, 1975, 449 pp. (In Russian)

[6] Yu. L. Daletskiy, M. G. Kreyn, Solutions Stability of Differential Equations in Banach Space, Nauka Publ., Moscow, 1970, 536 pp. (In Russian)

[7] I. P. Natanson, Theory of Functions of a Real Variable, State Publ. of Technical and Theoretical Literature, Moscow–Leningrad, 1959, 399 pp. (In Russian) | MR

[8] P. Khalmosh, A Hilbert Space Problem Book, Mir Publ., Moscow, 1970, 252 pp. (In Russian)

[9] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskiy, Theory of Lyapunov Exponents and Its Applications to the Stability Issues, Nauka Publ., Moscow, 1966, 576 pp. (In Russian) | MR