Keywords: the norm of a matrix, the logarithmic norm of a matrix, Young’s inequality, Holder’s inequality.
@article{VTAMU_2018_23_123_a9,
author = {O. I. Kleshchina},
title = {The norm and the logarithmic norm of infinite matrices},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {424--430},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/}
}
O. I. Kleshchina. The norm and the logarithmic norm of infinite matrices. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 424-430. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a9/
[1] U. Rudin, Functional Analysis, Mir Publ., Moscow, 1975, 449 pp. (In Russian)
[2] A. I. Perov, I. D. Kostrub, “On the Spectral Abscissa and the Logarithmic Norm”, Mathematical Notes, 101:4 (2017), 562–575 (In Russian)
[3] S. M. Lozinskiy, “Error estimate for numerical integration of ordinary differential equations”, Russian Mathematics, 1958, no. 5, 52–90 (In Russian)
[4] L. A. Lyusternik, V. I. Sobolev, Short Course of Functional Analysis, Vysshaya Shkola Publ., Moscow, 1982, 271 pp. (In Russian) | MR
[5] R. Kuk, Infinite Matrices and Sequence Spaces, Mir Publ., Moscow, 1975, 449 pp. (In Russian)
[6] Yu. L. Daletskiy, M. G. Kreyn, Solutions Stability of Differential Equations in Banach Space, Nauka Publ., Moscow, 1970, 536 pp. (In Russian)
[7] I. P. Natanson, Theory of Functions of a Real Variable, State Publ. of Technical and Theoretical Literature, Moscow–Leningrad, 1959, 399 pp. (In Russian) | MR
[8] P. Khalmosh, A Hilbert Space Problem Book, Mir Publ., Moscow, 1970, 252 pp. (In Russian)
[9] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskiy, Theory of Lyapunov Exponents and Its Applications to the Stability Issues, Nauka Publ., Moscow, 1966, 576 pp. (In Russian) | MR