@article{VTAMU_2018_23_123_a7,
author = {A. A. Kandakov and K. M. Chudinov},
title = {Eeffective criteria of exponential stability of autonomous difference equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {402--414},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a7/}
}
TY - JOUR AU - A. A. Kandakov AU - K. M. Chudinov TI - Eeffective criteria of exponential stability of autonomous difference equations JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 402 EP - 414 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a7/ LA - ru ID - VTAMU_2018_23_123_a7 ER -
%0 Journal Article %A A. A. Kandakov %A K. M. Chudinov %T Eeffective criteria of exponential stability of autonomous difference equations %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 402-414 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a7/ %G ru %F VTAMU_2018_23_123_a7
A. A. Kandakov; K. M. Chudinov. Eeffective criteria of exponential stability of autonomous difference equations. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 402-414. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a7/
[1] M. Marden (ed.), Geometry of Polynomials, 2nd, American Math. Soc., Providence, 1966, 243 pp. | MR
[2] J. M. McNamee, V. Pan, Numerical Methods for Roots of Polynomials, Studies in Computational Mathematics, 16, Elsevier Science, Cambridge, 2013, 718 pp. | MR
[3] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005, 539 pp. | MR
[4] S. Levin, R. May, “A note on difference-delay equations”, Theoret. Popul. Biol., 9 (1976), 178–187 | DOI | MR
[5] I. S. Levitskaya, “A note on the stability oval for $x_{n+1}=x_n+Ax_{n-k}$”, J. Difference Equ. Appl., 11:8 (2004), 701–705 | DOI | MR
[6] F. M. Dannan, “The asymptotic stability of $x(n + k) + ax(n) + bx(n - l) = 0$”, J. Difference Equ. Appl., 7:6 (2004), 589–599 | DOI | MR
[7] M. M. Kipnis, R. M. Nigmatulin, “Stability of the trinomial linear difference equations with two delays”, Automation and Remote Control, 2004, no. 11, 25–39 (In Russian)
[8] Yu. P. Nikolaev, “The geometry of $D$-decomposition of a two-dimensional plane of arbitrary coefficients of the characteristic polynomial of a discrete system”, Automation and Remote Control, 2004, no. 12, 49–61 (In Russian)
[9] J. Čermák, J. Jánský, “Explicit stability conditions for a linear trinomial delay difference equation”, Appl. Math. Letters, 43 (2015), 56–60 | DOI | MR
[10] M. M. Kipnis, V. V. Malygina, “The stability cone for a matrix delay difference equation”, International Journal of Mathematics and Mathematical Sciences, 2011, 1–15 | DOI | MR
[11] S. A. Ivanov, M. M. Kipnis, V. V. Malygina, “The stability cone for a difference matrix equation with two delays”, ISRN Applied Math., 2011, no. 2011, 1–19 | DOI | MR
[12] A. A. Kandakov, K. M. Chudinov, “Effective stability criterion for a discrete dynamical system”, Applied Mathematics and Control Sciences, 2017, no. 4, 88–103 (In Russian)
[13] I. Schur, “Über Potenzreihen, die im Innern des Einheitkreises beschränkt sind”, J. Reine Angew. Math., 148 (1918), 122–145 | MR
[14] A. Cohn, “Über die Anzahl der Wurzein einer algebraischen Gleichung in einem Kreise”, Math. Zeit., 14 (1922), 111–148 | DOI | MR