On stability of difference equations in partially ordered spaces
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 386-394
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider implicit difference equations in partially ordered spaces. We define the notion of a stable equilibrium point. The conditions of the stability is obtained. The study is based on the theory of partially ordered mappings.
Keywords:
implicit difference equation, stable equilibrium point, partially ordered space, partially ordered mapping.
@article{VTAMU_2018_23_123_a5,
author = {T. V. Zhukovskaya and I. A. Zabrodskiy and M. V. Borzova},
title = {On stability of difference equations in partially ordered spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {386--394},
publisher = {mathdoc},
volume = {23},
number = {123},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/}
}
TY - JOUR AU - T. V. Zhukovskaya AU - I. A. Zabrodskiy AU - M. V. Borzova TI - On stability of difference equations in partially ordered spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 386 EP - 394 VL - 23 IS - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/ LA - ru ID - VTAMU_2018_23_123_a5 ER -
%0 Journal Article %A T. V. Zhukovskaya %A I. A. Zabrodskiy %A M. V. Borzova %T On stability of difference equations in partially ordered spaces %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 386-394 %V 23 %N 123 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/ %G ru %F VTAMU_2018_23_123_a5
T. V. Zhukovskaya; I. A. Zabrodskiy; M. V. Borzova. On stability of difference equations in partially ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 386-394. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/