On stability of difference equations in partially ordered spaces
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 386-394

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider implicit difference equations in partially ordered spaces. We define the notion of a stable equilibrium point. The conditions of the stability is obtained. The study is based on the theory of partially ordered mappings.
Keywords: implicit difference equation, stable equilibrium point, partially ordered space, partially ordered mapping.
@article{VTAMU_2018_23_123_a5,
     author = {T. V. Zhukovskaya and I. A. Zabrodskiy and M. V. Borzova},
     title = {On stability of difference equations in partially ordered spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {386--394},
     publisher = {mathdoc},
     volume = {23},
     number = {123},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - I. A. Zabrodskiy
AU  - M. V. Borzova
TI  - On stability of difference equations in partially ordered spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 386
EP  - 394
VL  - 23
IS  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/
LA  - ru
ID  - VTAMU_2018_23_123_a5
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A I. A. Zabrodskiy
%A M. V. Borzova
%T On stability of difference equations in partially ordered spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 386-394
%V 23
%N 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/
%G ru
%F VTAMU_2018_23_123_a5
T. V. Zhukovskaya; I. A. Zabrodskiy; M. V. Borzova. On stability of difference equations in partially ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 386-394. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a5/