@article{VTAMU_2018_23_123_a4,
author = {Z. T. Zhukovskaya and S. E. Zhukovskiy},
title = {On generalizations and applications of variational principles of nonlinear analysis},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {377--385},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/}
}
TY - JOUR AU - Z. T. Zhukovskaya AU - S. E. Zhukovskiy TI - On generalizations and applications of variational principles of nonlinear analysis JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 377 EP - 385 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/ LA - ru ID - VTAMU_2018_23_123_a4 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A S. E. Zhukovskiy %T On generalizations and applications of variational principles of nonlinear analysis %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 377-385 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/ %G ru %F VTAMU_2018_23_123_a4
Z. T. Zhukovskaya; S. E. Zhukovskiy. On generalizations and applications of variational principles of nonlinear analysis. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 377-385. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/
[1] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003, 690 pp. | MR
[2] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proceedings of the Steklov Institute of Mathematics, 291, 2015, 30–44 (In Russian)
[3] A. V. Arutyunov, S. E. Zhukovskiy, “Variational Principles in Nonlinear Analysis and Their Generalization”, Mathematical Notes, 103:6 (2018), 948–954 (In Russian)
[4] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp.; F. H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley Sons, New York, 1983, 280 pp. | MR
[5] B. S. Mordukhovich, Variational Analysis and Generallized Differentiation, v. I, Basic Theory, Springer, New York, 2006, 579 pp. | MR