On generalizations and applications of variational principles of nonlinear analysis
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 377-385

Voir la notice de l'article provenant de la source Math-Net.Ru

There are considered some classes of functions to which variational principles of nonlinear are applicable. In particular, it is shown that the Bishop-Phelps variational principle is applicable to some unbounded below functions. The properties of locally Lipschitzian mappings are investigated. Conditions for a mapping that is pseudo-Lipschitzian at every point of its graph to be Lipschitzian are derived.
Keywords: Bishop-Phelps variational principle, pseudo-Lipshitzian mapping.
@article{VTAMU_2018_23_123_a4,
     author = {Z. T. Zhukovskaya and S. E. Zhukovskiy},
     title = {On generalizations and applications of variational principles of nonlinear analysis},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {377--385},
     publisher = {mathdoc},
     volume = {23},
     number = {123},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/}
}
TY  - JOUR
AU  - Z. T. Zhukovskaya
AU  - S. E. Zhukovskiy
TI  - On generalizations and applications of variational principles of nonlinear analysis
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 377
EP  - 385
VL  - 23
IS  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/
LA  - ru
ID  - VTAMU_2018_23_123_a4
ER  - 
%0 Journal Article
%A Z. T. Zhukovskaya
%A S. E. Zhukovskiy
%T On generalizations and applications of variational principles of nonlinear analysis
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 377-385
%V 23
%N 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/
%G ru
%F VTAMU_2018_23_123_a4
Z. T. Zhukovskaya; S. E. Zhukovskiy. On generalizations and applications of variational principles of nonlinear analysis. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 377-385. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a4/