On stability control of a parabolic systems with distributed parameters on the graph
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 368-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is an attempt to demonstrate the concept of sustainability in the undisturbed state Lyapunov differential system for equations with partial derivatives, and show the ability to use a famous classical results in the studied case.
Keywords: system of parabolic equations, distributed parameters on the graph, initial-boundary value problem, equivalent of Lyapunov stability.
@article{VTAMU_2018_23_123_a3,
     author = {A. P. Zhabko and V. V. Provotorov and E. N. Provotorova},
     title = {On stability control of a parabolic systems with distributed parameters on the graph},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {368--376},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a3/}
}
TY  - JOUR
AU  - A. P. Zhabko
AU  - V. V. Provotorov
AU  - E. N. Provotorova
TI  - On stability control of a parabolic systems with distributed parameters on the graph
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 368
EP  - 376
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a3/
LA  - ru
ID  - VTAMU_2018_23_123_a3
ER  - 
%0 Journal Article
%A A. P. Zhabko
%A V. V. Provotorov
%A E. N. Provotorova
%T On stability control of a parabolic systems with distributed parameters on the graph
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 368-376
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a3/
%G ru
%F VTAMU_2018_23_123_a3
A. P. Zhabko; V. V. Provotorov; E. N. Provotorova. On stability control of a parabolic systems with distributed parameters on the graph. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 368-376. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a3/

[1] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic system with time-delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 89–104 (In Russian) | MR

[2] V. V. Provotorov, A. S. Volkova, Initial-Boundary Value Problems with Distributed Parameters on the Graph, The Scientific Book Publishing House, Voronezh, 2014, 188 pp. (In Russian)

[3] A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics, 2014, no. 3, 3–18 (In Russian)

[4] J.-L. Lions, Some Methods for Solving Nonlinear Boundary Problems, Mir Publ., Moscow, 1972, 581 pp. (In Russian)

[5] A. P. Zhabko, E. D. Kotina, O. N. Chizhova, Differential Equation and Stability, Lan' Publ., St. Petersburg, 2015, 320 pp. (In Russian)

[6] S. L. Podvalnyy, V. V. Provotorov, “Determining the starting function in the problem of observation of parabolic system with distributed parameters on the graph”, Proceedings of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)

[7] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike region”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 (In Russian) | MR