About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 566-574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions of a solubility and assessment of solutions of an implicit differential equation with autoadjustable (that is depending on required function) argument deviation are received. Results about the covering displays of partially ordered spaces are used.
Keywords: the implicit differential equation with autoadjustable deviation argument, Cauchy’s task, the covering display is ordered, differential inequality.
@article{VTAMU_2018_23_123_a27,
     author = {I. D. Serova and A. A. Repin},
     title = {About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {566--574},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/}
}
TY  - JOUR
AU  - I. D. Serova
AU  - A. A. Repin
TI  - About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 566
EP  - 574
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/
LA  - ru
ID  - VTAMU_2018_23_123_a27
ER  - 
%0 Journal Article
%A I. D. Serova
%A A. A. Repin
%T About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 566-574
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/
%G ru
%F VTAMU_2018_23_123_a27
I. D. Serova; A. A. Repin. About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 566-574. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/

[1] S. A. Chaplygin, Foundations of New Method of Approximate Integration of Differential Equations, Moscow, 1919, 18 pp. (In Russian)

[2] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR

[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On points of convergence of reflections in partly ordered spaces”, Proceedings of the Russian Academy of Sciences, 453:5 (2013), 475–478 (In Russian)

[4] E. S. Zhukovskiy, “On ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1610–1627 (In Russian) | MR

[5] E. S. Zhukovskiy, “About orderly covering mappings and Chaplygin’s type integral inequalities”, St. Petersburg Mathematical Journal, 30:1 (2018), 96–127 (In Russian)

[6] I. D. Serova, “About implicit differential inequalities with deviating argument”, Tambov University Reports. Series: Natural and Technical Sciences, 21:3 (2017), 571–578 (In Russian) | DOI

[7] V. G. Pisarenko, “Equations with divergent argument that emerge in problem of many ponderable electrically charged bodies with an allowance for delay of forces of interaction”, Differential Equations with Divergent Argument, Naukova Dumka Publ., Kiev, 1977, 255–269 (In Russian) | MR

[8] R. D. Driver, “A functional-differential system of neutral type arising in a two body-problem of classical electrodynamics”, Nonlinear Differential Equations and Nonlinear Mechanics, International Symposium “Nonlinear Differential Equations and Nonlinear Mechanics”, Academic Press, New York, 1963, 474–484 | DOI | MR

[9] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of Modern Theory of Functional Differential Equations. Methods and Applications, Institute of Computer Science Publ., Moscow, 2002, 384 pp. (In Russian) | MR

[10] S. A. Gusarenko, E. S. Zhukovskiy, V. P. Maksimov, “To the theory of functional and differential equations with local Volterra operators”, Proceedings of the USSR Academy of Sciences, 287:2 (1986), 268–272 (In Russian) | MR

[11] E. S. Zhukovskiy, Operator Inequality and Functional and Differential Equations, Cand. phys.-math. sci. diss, Perm, 1983 (In Russian)

[12] A. D. Ioffe, V. M. Tikhomirov, Theory of Extremal Problems, Nauka Publ., Moscow, 1974 (In Russian)

[13] J. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obuhovskiy, Introduction to the Theory of Multivalued Reflection and Differential Inclusion, Book House “Librokom” Publ., Moscow, 2011 (In Russian) | MR

[14] I. V. Shragin, “Conditions for measurability of superpositions”, Proceedings of the USSR Academy of Sciences, 197:2 (1971), 295–298 (In Russian) | MR

[15] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, Foreign Languages Publishing House, Moscow, 1962, 896 pp. (In Russian)