@article{VTAMU_2018_23_123_a27,
author = {I. D. Serova and A. A. Repin},
title = {About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {566--574},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/}
}
TY - JOUR AU - I. D. Serova AU - A. A. Repin TI - About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 566 EP - 574 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/ LA - ru ID - VTAMU_2018_23_123_a27 ER -
%0 Journal Article %A I. D. Serova %A A. A. Repin %T About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 566-574 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/ %G ru %F VTAMU_2018_23_123_a27
I. D. Serova; A. A. Repin. About existence and estimates of solutions of the implicit differential equation with autoadjustable deviation argument. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 566-574. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a27/
[1] S. A. Chaplygin, Foundations of New Method of Approximate Integration of Differential Equations, Moscow, 1919, 18 pp. (In Russian)
[2] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR
[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On points of convergence of reflections in partly ordered spaces”, Proceedings of the Russian Academy of Sciences, 453:5 (2013), 475–478 (In Russian)
[4] E. S. Zhukovskiy, “On ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1610–1627 (In Russian) | MR
[5] E. S. Zhukovskiy, “About orderly covering mappings and Chaplygin’s type integral inequalities”, St. Petersburg Mathematical Journal, 30:1 (2018), 96–127 (In Russian)
[6] I. D. Serova, “About implicit differential inequalities with deviating argument”, Tambov University Reports. Series: Natural and Technical Sciences, 21:3 (2017), 571–578 (In Russian) | DOI
[7] V. G. Pisarenko, “Equations with divergent argument that emerge in problem of many ponderable electrically charged bodies with an allowance for delay of forces of interaction”, Differential Equations with Divergent Argument, Naukova Dumka Publ., Kiev, 1977, 255–269 (In Russian) | MR
[8] R. D. Driver, “A functional-differential system of neutral type arising in a two body-problem of classical electrodynamics”, Nonlinear Differential Equations and Nonlinear Mechanics, International Symposium “Nonlinear Differential Equations and Nonlinear Mechanics”, Academic Press, New York, 1963, 474–484 | DOI | MR
[9] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of Modern Theory of Functional Differential Equations. Methods and Applications, Institute of Computer Science Publ., Moscow, 2002, 384 pp. (In Russian) | MR
[10] S. A. Gusarenko, E. S. Zhukovskiy, V. P. Maksimov, “To the theory of functional and differential equations with local Volterra operators”, Proceedings of the USSR Academy of Sciences, 287:2 (1986), 268–272 (In Russian) | MR
[11] E. S. Zhukovskiy, Operator Inequality and Functional and Differential Equations, Cand. phys.-math. sci. diss, Perm, 1983 (In Russian)
[12] A. D. Ioffe, V. M. Tikhomirov, Theory of Extremal Problems, Nauka Publ., Moscow, 1974 (In Russian)
[13] J. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obuhovskiy, Introduction to the Theory of Multivalued Reflection and Differential Inclusion, Book House “Librokom” Publ., Moscow, 2011 (In Russian) | MR
[14] I. V. Shragin, “Conditions for measurability of superpositions”, Proceedings of the USSR Academy of Sciences, 197:2 (1971), 295–298 (In Russian) | MR
[15] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, Foreign Languages Publishing House, Moscow, 1962, 896 pp. (In Russian)