Keywords: Lorentz system, attractor, power series.
@article{VTAMU_2018_23_123_a26,
author = {A. N. Pchelintsev},
title = {On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {555--565},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/}
}
TY - JOUR AU - A. N. Pchelintsev TI - On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 555 EP - 565 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/ LA - ru ID - VTAMU_2018_23_123_a26 ER -
%0 Journal Article %A A. N. Pchelintsev %T On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 555-565 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/ %G ru %F VTAMU_2018_23_123_a26
A. N. Pchelintsev. On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 555-565. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/
[1] S. Landa, Nonlinear Oscillations and Waves, Book House “Librokom” Publ., Moscow, 2010, 552 pp. (In Russian) | MR
[2] J. A. Llanos-Pérez, J. A. Betancourt-Mar, G. Cochob, R. Mansilla, J. M. Nieto-Villar, “Phase transitions in tumor growth: III vascular and metastasis behavior”, Physica A: Statistical Mechanics and its Applications, 462 (2016), 560–568 | DOI | MR
[3] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[4] J. A. Yorke, E. D. Yorke, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, Journal of Statistical Physics, 21:3 (1979), 263–277 | DOI | MR
[5] D. A. Kaloshin, “Search for and stabilization of unstable saddle cycles in the Lorenz system”, Differential Equations, 37:11 (2001), 1559–1561 (In Russian) | MR
[6] I. Babuska, M. Prager, E. Vitasek, Numerical Processes in Differential Equations, Interscience Publishers John Wiley Sons, New York, 1966, 351 pp. | MR
[7] J. Teixeira, C. A. Reynolds, K. Judd, “Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design”, Journal of the Atmospheric Sciences, 64:1 (2007), 175–189 | DOI
[8] S. H. Strogatz, Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Publ., New York, 1994, 498 pp. | MR
[9] S. A. Sarra, C. Meador, “On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods”, Nonlinear Analysis: Modelling and Control, 16:3 (2011), 340–352 | DOI | MR
[10] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer, Heidelberg, 1993, 528 pp. | MR
[11] S. S. Motsa, P. Dlamini, M. Khumalo, “A new multistage spectral relaxation method for solving chaotic initial value systems”, Nonlinear Dynamics, 72:1 (2013), 265–283 | DOI | MR
[12] I. Hashim, M. S. M. Noorani, R. Ahmad, S. A. Bakar, E. S. Ismail, A. M. Zakaria, “Accuracy of the Adomian decomposition method applied to the Lorenz system”, Chaos, Solitons and Fractals, 28:5 (2006), 1149–1158 | DOI | MR
[13] O. Abdulaziz, N. F. M. Noor, I. Hashim, M. S. M. Noorani, “Further accuracy tests on Adomian decomposition method for chaotic systems”, Chaos, Solitons and Fractals, 36:5 (2008), 1405–1411 | DOI
[14] P. Vadasz, S. Olek, “Convergence and accuracy of Adomian's decomposition method for the solution of Lorenz equations”, International Journal of Heat and Mass Transfer, 43:10 (2000), 1715–1734 | DOI
[15] A. N. Pchelintsev, “Numerical and physical modeling of the dynamics of the Lorenz system”, Siberian Journal of Numerical Mathematics, 17:2 (2014), 191–201 (In Russian) | MR
[16] R. Lozi, A. N. Pchelintsev, “A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case”, International Journal of Bifurcation and Chaos, 25:13 (2015) | DOI | MR
[17] S. Jafari, J. C. Sprott, F. Nazarimehr, “Recent new examples of hidden attractors”, The European Physical Journal Special Topics, 224:8 (2015), 1469–1476 | DOI
[18] E. S. Zhukovskiy, “On a parametric specification of the solution of a differential equation and its approximate construction”, Russian Mathematics, 1996, no. 4, 31–34 (In Russian)