On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 555-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the author considers the modification of the method of power series for the numerical construction of unstable solutions of systems of ordinary differential equations of chaotic type with quadratic nonlinearities in general form. A region of convergence of series is found and an algorithm for constructing approximate solutions is proposed.
Mots-clés : chaos
Keywords: Lorentz system, attractor, power series.
@article{VTAMU_2018_23_123_a26,
     author = {A. N. Pchelintsev},
     title = {On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {555--565},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/}
}
TY  - JOUR
AU  - A. N. Pchelintsev
TI  - On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 555
EP  - 565
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/
LA  - ru
ID  - VTAMU_2018_23_123_a26
ER  - 
%0 Journal Article
%A A. N. Pchelintsev
%T On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 555-565
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/
%G ru
%F VTAMU_2018_23_123_a26
A. N. Pchelintsev. On the numerical method of construction of unstable solutions of dynamical systems with quadratic nonlinearities. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 555-565. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a26/

[1] S. Landa, Nonlinear Oscillations and Waves, Book House “Librokom” Publ., Moscow, 2010, 552 pp. (In Russian) | MR

[2] J. A. Llanos-Pérez, J. A. Betancourt-Mar, G. Cochob, R. Mansilla, J. M. Nieto-Villar, “Phase transitions in tumor growth: III vascular and metastasis behavior”, Physica A: Statistical Mechanics and its Applications, 462 (2016), 560–568 | DOI | MR

[3] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[4] J. A. Yorke, E. D. Yorke, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, Journal of Statistical Physics, 21:3 (1979), 263–277 | DOI | MR

[5] D. A. Kaloshin, “Search for and stabilization of unstable saddle cycles in the Lorenz system”, Differential Equations, 37:11 (2001), 1559–1561 (In Russian) | MR

[6] I. Babuska, M. Prager, E. Vitasek, Numerical Processes in Differential Equations, Interscience Publishers John Wiley Sons, New York, 1966, 351 pp. | MR

[7] J. Teixeira, C. A. Reynolds, K. Judd, “Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design”, Journal of the Atmospheric Sciences, 64:1 (2007), 175–189 | DOI

[8] S. H. Strogatz, Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Publ., New York, 1994, 498 pp. | MR

[9] S. A. Sarra, C. Meador, “On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods”, Nonlinear Analysis: Modelling and Control, 16:3 (2011), 340–352 | DOI | MR

[10] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer, Heidelberg, 1993, 528 pp. | MR

[11] S. S. Motsa, P. Dlamini, M. Khumalo, “A new multistage spectral relaxation method for solving chaotic initial value systems”, Nonlinear Dynamics, 72:1 (2013), 265–283 | DOI | MR

[12] I. Hashim, M. S. M. Noorani, R. Ahmad, S. A. Bakar, E. S. Ismail, A. M. Zakaria, “Accuracy of the Adomian decomposition method applied to the Lorenz system”, Chaos, Solitons and Fractals, 28:5 (2006), 1149–1158 | DOI | MR

[13] O. Abdulaziz, N. F. M. Noor, I. Hashim, M. S. M. Noorani, “Further accuracy tests on Adomian decomposition method for chaotic systems”, Chaos, Solitons and Fractals, 36:5 (2008), 1405–1411 | DOI

[14] P. Vadasz, S. Olek, “Convergence and accuracy of Adomian's decomposition method for the solution of Lorenz equations”, International Journal of Heat and Mass Transfer, 43:10 (2000), 1715–1734 | DOI

[15] A. N. Pchelintsev, “Numerical and physical modeling of the dynamics of the Lorenz system”, Siberian Journal of Numerical Mathematics, 17:2 (2014), 191–201 (In Russian) | MR

[16] R. Lozi, A. N. Pchelintsev, “A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case”, International Journal of Bifurcation and Chaos, 25:13 (2015) | DOI | MR

[17] S. Jafari, J. C. Sprott, F. Nazarimehr, “Recent new examples of hidden attractors”, The European Physical Journal Special Topics, 224:8 (2015), 1469–1476 | DOI

[18] E. S. Zhukovskiy, “On a parametric specification of the solution of a differential equation and its approximate construction”, Russian Mathematics, 1996, no. 4, 31–34 (In Russian)